基础环境:
anaconda3-5.2.0
Python3.6
win10x64
一,win10安装graphviz-2.38.msi 官网下载:graphviz.gitlab.io/_pages/Down…
网盘下载:pan.baidu.com/s/1acgCB8nF… 提取码:l6tw
二,Python安装graphviz pip3 install graphviz
三,Python安装pydotplus pip3 install pydotplus
四,代码模拟鸢尾花决策树分类 # -*- coding: utf-8 -*- """ Created on Wed Jul 31 16:51:08 2019 @author: 86182 """
from sklearn.datasets import load_iris from sklearn import tree import pydotplus #用于划分训练集与测试集 from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report
#加载数据 iris = load_iris() #划分训练集与测试集 (training_inputs, testing_inputs, training_classes, testing_classes) =train_test_split(iris.data, iris.target,test_size=0.4, random_state=1) # 构建模型 clf = tree.DecisionTreeClassifier() clf = clf.fit(training_inputs, training_classes) #测试值预测 y_predict = clf.predict(testing_inputs) #预测值和测试值打分 score = classification_report(testing_classes, y_predict) print(score) # 保存模型 with open("iris.dot", 'w') as f: f = tree.export_graphviz(clf, out_file=f)
# 画图,保存到pdf文件 # 设置图像参数 dot_data = tree.export_graphviz(clf, out_file=None, feature_names=iris.feature_names, class_names=iris.target_names, filled=True, rounded=True, special_characters=True) graph = pydotplus.graph_from_dot_data(dot_data) # 保存图像到pdf文件 graph.write_pdf("iris.pdf")

|
|