LinkedList源码分析

115 阅读21分钟

1.LinkedList简介

LinkedList是一个实现了List接口和Deque接口的双端链表。 LinkedList底层的链表结构使它支持高效的插入和删除操作,另外它实现了Deque接口,使得LinkedList类也具有队列的特性

LinkedList不是线程安全的,如果想使LinkedList变成线程安全的,可以调用静态类Collections类中的synchronizedList方法:

List list = Collections.synchronizedList(new LinkedList<>());

与ArrayList不一样,LinkedList底层是链表(双向),其结点结构:

private static class Node<E> {
        //存放元素
        E item;
        //指向下一个Node节点
        Node<E> next;
        //指向上一个Node节点
        Node<E> prev;

        Node(Node<E> prev, E element, Node<E> next) {
            this.item = element;
            this.next = next;
            this.prev = prev;
        }
    }

2.LinkedListDemo

这一部分主要是为了了解LinkedList常见API的用法,熟悉的朋友们可以直接跳过~

public class LinkedListDemo {
    public static void main(String[] args) {
        LinkedList<String> list = new LinkedList<>();
        /*
        增
        public void addFirst(E e) //插入指定元素到列表首端

        public void addLast(E e)  //插入指定元素到列表尾端
        public boolean add(E e) //尾端

        public void add(int index, E element) //将指定元素element插入到原列表的index位置之前

        //添加指定集合中的所有元素到列表的尾部
        public boolean addAll(Collection<? extends E> c)

        //将指定集合中的所有元素插入到列表中index-1与index之间
        public boolean addAll(int index, Collection<? extends E> c)
         */
        list.add("b");
        list.add(0, "a");
        list.addFirst("first");
        list.addLast("last");

        HashSet<String> sets = new HashSet<>();
        sets.add("c");
        sets.add("d");
        sets.add("e");

        list.addAll(3, sets);
        System.out.println(list.toString());

        /*
        改
        public E set(int index, E element) //使用指定元素替换指定位置的元素,返回原元素的值
         */
        list.set(1, "aa");
        System.out.println(list.toString());

        /*
        查
        public boolean contains(Object o)  //查看列表中是否包含指定元素
        public E get(int index) //返回指定位置的元素
        public E getFirst()     // 返回列表的首节点
        public E getLast()      // 返回列表的尾节点

        //从头-->尾遍历,返回指定元素第一次出现的位置,否则返回-1
        public int indexOf(Object o)
        //从尾-->头遍历,返回指定元素第一次出现的位置,否则返回-1,
        //改方法的功能也可以理解为返回元素最后一次出现的位置
        public int lastIndexOf(Object o)

         */
        System.out.println("是否包含aa: " + list.contains("aa"));
        System.out.println("index=1: " + list.get(1));
        System.out.println("First: " + list.getFirst());
        System.out.println("Last: " + list.getLast());


        /*
        遍历
        使用foreach或者迭代器,但注意迭代器是一次性使用,每次使用都要新建

         */
        System.out.print("使用foreach遍历: ");
        for (String l : list) {
            System.out.print(l + "  ");
        }
        System.out.println();

        System.out.print("使用迭代器遍历:  ");
        Iterator<String> iterator = list.iterator();
        while (iterator.hasNext()) {
            System.out.print(iterator.next() + "  ");
        }
        System.out.println();


        /*
        删
        public E removeFirst()  //移除并返回首节点
        public E removeLast()   //移除并返回尾节点
        public boolean remove(Object o) //删除列表中首次出现的该指定元素
        public E remove(int index)      //移除列表指定位置的元素,并返回该元素
        public E remove()   //删除列表的头部First

        //从头-->尾遍历,删除此队列中第一个出现的指定元素
        public boolean removeFirstOccurrence(Object o)

        //从尾-->头遍历,删除此队列中第一次出现的指定元素
        public boolean removeLastOccurrence(Object o)

         */
        list.removeFirst();
        list.removeLast();
        System.out.println(list.toString());
        list.remove();
        System.out.println(list.toString());
        list.removeFirstOccurrence("c");
        System.out.println(list.toString());

        /*
        * 在LinkedList中还有一个列表迭代器ListIterator

        * 跟普通迭代器不一样的地方在于这个迭代器不仅可以正序遍历,
          还可以使用previous方法进行倒序遍历,
          DescendingIterator就是使用了迭代器的previous方法进行遍历的。
          其方法除了hasNext()与next()外,还有:
          public boolean hasPrevious()
          public E previous()
          public int nextIndex()
          public int previousIndex()
          public void remove()
          public void set(E e)
          public void add(E e)
        */

        //-------------------------------------------------------------------
        /*
        除以上常用API外,LinkedList还提供了一些供队列结构使用的API:
         */
        Queue<String> queue = new LinkedList();

        /*
        增(入队)
        public void push(E e)           //在队列头部插入元素
        public boolean offer(E e)       //添加指定元素到队列尾部
        public boolean offerFirst(E e)  //插入指定元素到队列首部
        public boolean offerLast(E e)   //插入指定元素到队列尾部
        */

        /*
        查
        public E peek()         //查看(不操作)此列表的头部元素。
        public E peekFirst()    //取回但是不删除队列的首元素。如果队列为空则返回null
        public E peekLast()     //取回但是不删除链表的最后一个元素,如果队列为空,则返回null
        public E element()      //取回但不删除此列表的头部(第一个元素)
         */

        /*
        删(出队)
        public E pop()          //删除并返回队列的第一个元素,如果列表为空则抛出NoSuchElementException异常
        public E remove()       //取回并删除此列表的头部(第一个元素)
        public E poll()         //返回并删除此列表的头部(第一个元素)
        public E pollFirst()    //取回并删除队列的首元素,如果队列为空,则返回null
        public E pollLast()     //取回并删除队列的尾元素,如果队列为空,则返回null
         */
    }
}

输出:

[first, a, b, c, d, e, last]
[first, aa, b, c, d, e, last]
是否包含aa: true
index=1: aa
First: first
Last: last
使用foreach遍历: first  aa  b  c  d  e  last  
使用迭代器遍历:  first  aa  b  c  d  e  last  
[aa, b, c, d, e]
[b, c, d, e]
[b, d, e]

3.LinkedList与ArrayList对比分析

​ 根据上一篇文章我们知道,ArrayList的最大特点就是能随机访问,因为元素在物理上是连续存储的,所以访问的时候,可以通过简单的算法直接定位到指定位置,所以不管列表的元素数量有多少,总能在O(1)的时间里定位到指定位置,但是连续存储也是它的缺点,导致要在中间插入一个元素的时候,所有之后的元素都要往后挪动,需要进行更多的赋值操作,如果刚好需要扩容的话,那就会更慢了。而LinkedList只需要将插入位置的前后元素的next或prev引用进行调整即可,而且也没有扩容问题,因为它本身就没有容量的概念,理论上可以无限添加元素。

我们使用系统提供的计时器来比较以下两者的差别:

//自定义一个计时器,每个需要统计耗时的操作只需要继承该类,然后重写doSomeThing方法即可
public abstract class TimeCounter {
    private String name;

    TimeCounter(String name){
        this.name = name;
    }

    public void count(){long time = System.currentTimeMillis();
        doSomething();
        System.out.println(name + " 耗时:" + (System.currentTimeMillis() - time));
    }

    protected abstract void doSomething();
}

3.1 元素插入到末尾的add操作的比较
public class Test {
    public static void main(String[] args){
        TimeCounter arrayListAddCounter = new TimeCounter("ArrayList add插入到末尾:") {
            private List<Integer> list = new ArrayList<>();
            
            @Override
            protected void doSomething() {
                for (int i = 0; i < 1000000; i++) {
                    list.add( i);
                }
            }
        };

        TimeCounter linkedListAddCounter = new TimeCounter("LinkedList add插入到末尾:") {
            private List<Integer> list = new LinkedList<>();

            @Override
            protected void doSomething() {
                for (int i = 0; i < 1000000; i++) {
                    list.add( i);
                }
            }
        };

        arrayListAddCounter.count();
        linkedListAddCounter.count();
    }
}

输出:

ArrayList add插入到末尾: 耗时:40
LinkedList add插入到末尾: 耗时:768

是不是很意外- - ,因为在ArrayList容量足够的情况下,ArrayList的插入元素到末尾操作是比LinkedList插入要快的,因为它只需要进行一次赋值即可,而LinkedList还需要先new一个新节点然后再接到链表的最后,这个new的过程看起来微不足道,但是一旦循环次数到达一定量级,开销是不可忽略的。接下来我们再来看看把元素插入到表首两者的差异。

3.2 元素插入到表首的add操作的比较:
public class Test {
    public static void main(String[] args){
        TimeCounter arrayListAddCounter = new TimeCounter("ArrayList add插入到首端:") {
            private List<Integer> list = new ArrayList<>();

            @Override
            protected void doSomething() {
                for (int i = 0; i < 100000; i++) {
                    list.add(0, i);
                }
            }
        };

        TimeCounter linkedListAddCounter = new TimeCounter("LinkedList add插入到首端:") {
            private List<Integer> list = new LinkedList<>();

            @Override
            protected void doSomething() {
                for (int i = 0; i < 100000; i++) {
                    list.add(0, i);
                }
            }
        };

        arrayListAddCounter.count();
        linkedListAddCounter.count();
    }
}

输出:

ArrayList add插入到首端: 耗时:607
LinkedList add插入到首端: 耗时:11

结果在意料之中,因为每次都插入在首端时,ArrayList需要进行大量元素移动,而且列表中元素越多,需要进行移动的次数也越多,在这种情况下,插入元素的效率,LinkedList是明显优于ArrayList的。

3.3 查找操作的比较
public class Test {
    public static void main(String[] args){
        TimeCounter arrayListAddCounter = new TimeCounter("ArrayList get遍历元素:") {
            private List<Integer> list = new ArrayList<>();

            {
                for (int i = 0; i < 100000; i++) {
                    list.add(i);
                }
            }

            @Override
            protected void doSomething() {
                for (int i = 0; i < 100000; i++) {
                    list.get(i);
                }
            }
        };

        TimeCounter linkedListAddCounter = new TimeCounter("LinkedList get遍历元素:") {
            private List<Integer> list = new LinkedList<>();

            {
                for (int i = 0; i < 100000; i++) {
                    list.add(i);
                }
            }
            @Override
            protected void doSomething() {
                for (int i = 0; i < 100000; i++) {
                    list.get(i);
                }
            }
        };
        arrayListAddCounter.count();
        linkedListAddCounter.count();
    }
}

输出:

ArrayList get遍历元素: 耗时:3
LinkedList get遍历元素: 耗时:4484

可见,LinkedList不支持随机访问,查找元素的效率比ArrayList要低得多,因为在LinkedList中每次get的时候都是从链表两端进行逐个查找,直到找到指定的位置,这是一个十分耗时的过程。

总体来说,ArrayList和LinkedList是各有所长,在实际运用中可以根据具体业务需求决定选用哪一种,如果是插入操作比较频繁,当然是选用LinkedList较好,如果是查找操作较多,则选用ArrayList更优。当然,这也是建立在数据量大于万级的基础上,一般数据量较小的情况下,两者的差异不会很明显。

4.LinkedList源码分析

以下是LinkedList全部源码(注释详细),比较简单,推荐整体阅读一下,能够对LinkedList有更好的掌握。

import java.util.*;
import java.util.function.Consumer;

/**
 * 双向链表实现了List接口和Deque接口,实现了多有可选List操作,并且允许放入所有的元素,包括null。
 *
 * 注意,这个实现类不是线程安全的,如果多个线程同时访问一个链表,并且至少一个线程修改了链表的结构,
 * 则必须在外部实现同步。结构性修改指的是那些增加删除一个或多个元素的操作,仅设置元素的值不是结构修改。
 * 这通常通过在封装列表的某个对象上进行同步来实现。
 *
 * 如果没有这样的对象存在,则列表应该使用Collections.synchronizedList方法包装,最好在创建列表的时候进行,
 * 以防止意外的非同步引用对列表进行了修改。
 * List list = Collections.synchronizedList(new LinkedList(...));
 *
 * 该类的iterator方法和listIterator方法返回的迭代器是“fail-fast”的,如果列表在迭代器创建之后的任何时刻发生结构性的修改了,则调用迭代器自身的remove或者add方法时将会抛出ConcurrentModificationException异常,因此当遇到并发修改时,迭代器会快速的失败,而不是在未来某个不确定的时刻进行武断冒险或不确定性的行为
 *
 * 注意,通常来说,不能保证迭代器的fail-fast机制,在遇非同到步的并发修改时,不可能做出任何严格的保证。
 * fail-fast 迭代器只能尽最大努力抛出ConcurrentModificationException异常,因此,如果程序依赖这个异常来
 * 进行正确性判断是错误的,fail-fast机制应该仅用于检测异常。
 */

public class LinkedList<E>
        extends AbstractSequentialList<E>
        implements List<E>, Deque<E>, Cloneable, java.io.Serializable {
    transient int size = 0;

    /**
     * 指向第一个节点
     * 恒等式: (first == null && last == null) ||
     *            (first.prev == null && first.item != null)
     */
    transient Node<E> first;

    /**
     * 指向最后一个节点
     * 恒等式: (first == null && last == null) ||
     *            (last.next == null && last.item != null)
     */
    transient Node<E> last;

    /**
     * 构造一个空的列表
     */
    public LinkedList() {
    }

    /**
     * 构造一个包含指定集合内所有元素的列表,存储的顺序为集合的迭代器访问顺序。
     *      * @throws NullPointerException 空指针异常
     */
    public LinkedList(Collection<? extends E> c) {
        this();
        addAll(c);
    }

    /**
     * 把元素e链接成首节点
     */
    private void linkFirst(E e) {
        final Node<E> f = first;
        final Node<E> newNode = new Node<>(null, e, f);
        first = newNode;
        if (f == null)
            last = newNode;
        else
            f.prev = newNode;
        size++;
        modCount++;
    }

    /**
     * 把元素e链接成尾节点
     */
    void linkLast(E e) {
        final Node<E> l = last;
        final Node<E> newNode = new Node<>(l, e, null);
        last = newNode;
        if (l == null)
            first = newNode;
        else
            l.next = newNode;
        size++;
        modCount++;
    }

    /**
     * 插入一个元素到指定非空节点之前
     */
    void linkBefore(E e, Node<E> succ) {
        final Node<E> pred = succ.prev;
        final Node<E> newNode = new Node<>(pred, e, succ);
        succ.prev = newNode;
        if (pred == null)
            first = newNode;
        else
            pred.next = newNode;
        size++;
        modCount++;
    }

    /**
     * 移除首节点并返回该节点元素值
     */
    private E unlinkFirst(Node<E> f) {
        // assert f == first && f != null;
        final E element = f.item;
        final Node<E> next = f.next;
        f.item = null;
        f.next = null; // help GC
        first = next;
        if (next == null)
            last = null;
        else
            next.prev = null;
        size--;
        modCount++;
        return element;
    }

    /**
     * 移除尾节点并返回该节点元素值
     */
    private E unlinkLast(Node<E> l) {
        // assert l == last && l != null;
        final E element = l.item;
        final Node<E> prev = l.prev;
        l.item = null;
        l.prev = null; // help GC
        last = prev;
        if (prev == null)
            first = null;
        else
            prev.next = null;
        size--;
        modCount++;
        return element;
    }

    /**
     * 移除非空节点x
     */
    E unlink(Node<E> x) {
        // assert x != null;
        final E element = x.item;
        final Node<E> next = x.next;
        final Node<E> prev = x.prev;

        if (prev == null) {
            first = next;
        } else {
            prev.next = next;
            x.prev = null;
        }

        if (next == null) {
            last = prev;
        } else {
            next.prev = prev;
            x.next = null;
        }

        x.item = null;
        size--;
        modCount++;
        return element;
    }

    /**
     * 返回列表的首节点
     */
    public E getFirst() {
        final Node<E> f = first;
        if (f == null)
            throw new NoSuchElementException();
        return f.item;
    }

    /**
     * 返回列表的最后一个节点
     */
    public E getLast() {
        final Node<E> l = last;
        if (l == null)
            throw new NoSuchElementException();
        return l.item;
    }

    /**
     * 移除并返回首节点
     */
    public E removeFirst() {
        final Node<E> f = first;
        if (f == null)
            throw new NoSuchElementException();
        return unlinkFirst(f);
    }

    /**
     * 移除并返回尾节点
     */
    public E removeLast() {
        final Node<E> l = last;
        if (l == null)
            throw new NoSuchElementException();
        return unlinkLast(l);
    }

    /**
     * 插入指定元素到列表首端
     */
    public void addFirst(E e) {
        linkFirst(e);
    }

    /**
     * 扩展指定元素到列表尾端
     */
    public void addLast(E e) {
        linkLast(e);
    }

    /**
     * 返回列表中是否包含指定元素
     */
    public boolean contains(Object o) {
        return indexOf(o) != -1;
    }

    /**
     * 返回列表中元素个数
     */
    public int size() {
        return size;
    }

    /**
     * 添加指定元素到列表尾部
     */
    public boolean add(E e) {
        linkLast(e);
        return true;
    }

    /**
     * 如果该元素存在,则移除列表中首次出现的该指定元素,如果不存在,则原链表不会改变。
     * 如果该列表中包含该指定元素则返回true,否则返回false
     */
    public boolean remove(Object o) {
        if (o == null) {
            for (Node<E> x = first; x != null; x = x.next) {
                if (x.item == null) {
                    unlink(x);
                    return true;
                }
            }
        } else {
            for (Node<E> x = first; x != null; x = x.next) {
                if (o.equals(x.item)) {
                    unlink(x);
                    return true;
                }
            }
        }
        return false;
    }

    /**
     * 添加指定集合中的所有元素到列表的尾部,顺序为指定集合的迭代器遍历顺序。如果该操作正在进行时,指定集合
     * 被修改了,那么该操作的行为是不可预测的。
     */
    public boolean addAll(Collection<? extends E> c) {
        return addAll(size, c);
    }

    /**
     * 将指定集合中的所有元素插入到列表中index-1与index之间
     */
    public boolean addAll(int index, Collection<? extends E> c) {
        checkPositionIndex(index);

        Object[] a = c.toArray();
        //numNew表示插入元素的个数
        int numNew = a.length;
        if (numNew == 0)
            return false;
        Node<E> pred, succ;
        if (index == size) {
            succ = null;
            pred = last;
        } else {
            succ = node(index);
            pred = succ.prev;
        }
        //将集合中的元素连接到pred之后
        for (Object o : a) {
            @SuppressWarnings("unchecked") E e = (E) o;
            Node<E> newNode = new Node<>(pred, e, null);
            if (pred == null)
                first = newNode;
            else
                pred.next = newNode;
            pred = newNode;
        }
        //将index处及之后的元素与刚插入的部分连接起来
        if (succ == null) {
            last = pred;
        } else {
            pred.next = succ;
            succ.prev = pred;
        }

        size += numNew;
        modCount++;
        return true;
    }

    /**
     * 移除列表中所有元素
     */
    public void clear() {
        // 清除节点之间所有元素的链接不是必要的,但是:
        // - 如果被清除的节点处于不同代之间,可以帮助分代GC。
        // - 一定要释放内存,即便有一个迭代器引用
        for (Node<E> x = first; x != null; ) {
            Node<E> next = x.next;
            x.item = null;
            x.next = null;
            x.prev = null;
            x = next;
        }
        first = last = null;
        size = 0;
        modCount++;
    }


    // 位置访问操作

    /**
     * 返回指定位置的元素
     */
    public E get(int index) {
        checkElementIndex(index);
        return node(index).item;
    }

    /**
     * 使用指定元素替换指定位置的元素,返回原元素的值
     */
    public E set(int index, E element) {
        checkElementIndex(index);
        Node<E> x = node(index);
        E oldVal = x.item;
        x.item = element;
        return oldVal;
    }

    /**
     * 将指定元素element插入到原列表的index位置之前
     */
    public void add(int index, E element) {
        checkPositionIndex(index);

        if (index == size)
            linkLast(element);
        else
            linkBefore(element, node(index));
    }

    /**
     * 移除列表指定位置的元素
     * 返回列表中移除的元素。
     */
    public E remove(int index) {
        checkElementIndex(index);
        return unlink(node(index));
    }

    private boolean isElementIndex(int index) {
        return index >= 0 && index < size;
    }

    /**
     * 判断index下标是否是合法位置
     */
    private boolean isPositionIndex(int index) {
        return index >= 0 && index <= size;
    }

    /**
     * 返回IndexOutOfBoundsException 异常的错误信息
     */
    private String outOfBoundsMsg(int index) {
        return "Index: "+index+", Size: "+size;
    }

    private void checkElementIndex(int index) {
        if (!isElementIndex(index))
            throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
    }

    private void checkPositionIndex(int index) {
        if (!isPositionIndex(index))
            throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
    }

    /**
     * 返回指定指定位置index处的结点
     */
    Node<E> node(int index) {
        // assert isElementIndex(index);

        //做了一个小优化,如果取的序号小于元素个数的一半,则从链表首端开始遍历,否则从链表尾部开始遍历
        if (index < (size >> 1)) {
            Node<E> x = first;
            for (int i = 0; i < index; i++)
                x = x.next;
            return x;
        } else {
            Node<E> x = last;
            for (int i = size - 1; i > index; i--)
                x = x.prev;
            return x;
        }
    }

    // 搜索操作

    /**
     * 返回指定元素在列表中第一次出现的位置,否则返回-1
     */
    public int indexOf(Object o) {
        int index = 0;
        if (o == null) {
            for (Node<E> x = first; x != null; x = x.next) {
                if (x.item == null)
                    return index;
                index++;
            }
        } else {
            for (Node<E> x = first; x != null; x = x.next) {
                if (o.equals(x.item))
                    return index;
                index++;
            }
        }
        return -1;
    }

    /**
     * 返回指定元素在链表中最后一次出现的位置,如果链表中不包含该元素,则返回-1
     */
    public int lastIndexOf(Object o) {
        int index = size;
        if (o == null) {
            for (Node<E> x = last; x != null; x = x.prev) {
                index--;
                if (x.item == null)
                    return index;
            }
        } else {
            for (Node<E> x = last; x != null; x = x.prev) {
                index--;
                if (o.equals(x.item))
                    return index;
            }
        }
        return -1;
    }

    // 队列操作

    /**
     * 查看(不操作)此列表的头部元素。
     */
    public E peek() {
        final Node<E> f = first;
        return (f == null) ? null : f.item;
    }

    /**
     * 取回但不删除此列表的头部(第一个元素)。
     * 如果不存在,则会抛出NoSuchElementException异常
     */
    public E element() {
        return getFirst();
    }

    /**
     * 返回并删除此列表的头部(第一个元素)。
     * 如果该链表为空,则返回null
     */
    public E poll() {
        final Node<E> f = first;
        return (f == null) ? null : unlinkFirst(f);
    }

    /**
     * 取回并删除此列表的头部(第一个元素)。
     */
    public E remove() {
        return removeFirst();
    }

    /**
     * 添加指定元素到链表尾部
     */
    public boolean offer(E e) {
        return add(e);
    }

    // 双向队列操作
    /**
     * 插入指定元素到队列首部
     */
    public boolean offerFirst(E e) {
        addFirst(e);
        return true;
    }

    /**
     * 插入指定元素到队列尾部
     */
    public boolean offerLast(E e) {
        addLast(e);
        return true;
    }

    /**
     *
     * 取回但是不删除队列的首元素。如果队列为空则返回null。
     */
    public E peekFirst() {
        final Node<E> f = first;
        return (f == null) ? null : f.item;
    }

    /**
     * 取回但是不删除链表的最后一个元素,如果队列为空,则返回null
     */
    public E peekLast() {
        final Node<E> l = last;
        return (l == null) ? null : l.item;
    }

    /**
     * 取回并删除队列的首元素,如果队列为空,则返回null
     */
    public E pollFirst() {
        final Node<E> f = first;
        return (f == null) ? null : unlinkFirst(f);
    }

    /**
     * 取回并删除队列的尾元素,如果队列为空,则返回null
     */
    public E pollLast() {
        final Node<E> l = last;
        return (l == null) ? null : unlinkLast(l);
    }

    /**
     * 在队列头部插入元素
     */
    public void push(E e) {
        addFirst(e);
    }

    /**
     * 删除并返回队列的第一个元素,如果列表为空则抛出NoSuchElementException 异常
     */
    public E pop() {
        return removeFirst();
    }

    /**
     * 从头-->尾遍历,删除此队列中第一个出现的指定元素,如果队列中不包含该元素,则队列不会改变。
     */
    public boolean removeFirstOccurrence(Object o) {
        return remove(o);
    }

    /**
     * 从尾-->头遍历,删除此队列中第一次出现的指定元素,如果队列中不包含该元素,则队列不会改变。
     */
    public boolean removeLastOccurrence(Object o) {
        if (o == null) {
            for (Node<E> x = last; x != null; x = x.prev) {
                if (x.item == null) {
                    unlink(x);
                    return true;
                }
            }
        } else {
            for (Node<E> x = last; x != null; x = x.prev) {
                if (o.equals(x.item)) {
                    unlink(x);
                    return true;
                }
            }
        }
        return false;
    }

    /**
     * 返回从指定位置开始,以正确的序列迭代该列表的迭代器.
     * 列表迭代器是“fail-fast”的,如果列表在迭代器创建之后的任何时刻被进行
     * 结构性的修改了,则调用迭代器自身的remove或者add方法时将会抛出ConcurrentModificationException异常,因此
     * 当遇到并发修改时,迭代器会快速的失败,而不是在未来某个不确定的时刻进行武断冒险或不确定性的行为
     *
     * 注意,通常来说,不能保证迭代器的fail-fast机制,在遇到非同步的并发修改时,不可能做出任何严格的保证。
     * fail-fast 迭代器只能尽最大努力抛出ConcurrentModificationException异常,因此,如果程序依赖这个异常来
     * 进行正确性判断是错误的,fail-fast机制仅应该用于检测异常。
     */
    public ListIterator<E> listIterator(int index) {
        checkPositionIndex(index);
        return new ListItr(index);
    }

    //列表迭代器类
    private class ListItr implements ListIterator<E> {
        //记录上一个返回的节点
        private Node<E> lastReturned;
        //指向下一个节点
        private Node<E> next;
        //下一个节点的序号
        private int nextIndex;
        //用于检测遍历过程中List是否被修改
        private int expectedModCount = modCount;

        ListItr(int index) {
            // assert isPositionIndex(index);
            next = (index == size) ? null : node(index);
            nextIndex = index;
        }

        public boolean hasNext() {
            return nextIndex < size;
        }

        public E next() {
            //检测是否修改
            checkForComodification();
            if (!hasNext())
                throw new NoSuchElementException();

            lastReturned = next;
            next = next.next;
            nextIndex++;
            return lastReturned.item;
        }

        public boolean hasPrevious() {
            return nextIndex > 0;
        }

        public E previous() {
            checkForComodification();
            if (!hasPrevious())
                throw new NoSuchElementException();

            lastReturned = next = (next == null) ? last : next.prev;
            nextIndex--;
            return lastReturned.item;
        }

        public int nextIndex() {
            return nextIndex;
        }

        public int previousIndex() {
            return nextIndex - 1;
        }

        public void remove() {
            checkForComodification();
            if (lastReturned == null)
                throw new IllegalStateException();

            Node<E> lastNext = lastReturned.next;
            unlink(lastReturned);
            if (next == lastReturned)
                next = lastNext;
            else
                nextIndex--;
            lastReturned = null;
            expectedModCount++;
        }

        public void set(E e) {
            if (lastReturned == null)
                throw new IllegalStateException();
            checkForComodification();
            lastReturned.item = e;
        }

        public void add(E e) {
            checkForComodification();
            lastReturned = null;
            if (next == null)
                linkLast(e);
            else
                linkBefore(e, next);
            nextIndex++;
            expectedModCount++;
        }

        public void forEachRemaining(Consumer<? super E> action) {
            Objects.requireNonNull(action);
            while (modCount == expectedModCount && nextIndex < size) {
                action.accept(next.item);
                lastReturned = next;
                next = next.next;
                nextIndex++;
            }
            checkForComodification();
        }

        final void checkForComodification() {
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
        }
    }

    private static class Node<E> {
        //存放元素
        E item;
        //指向下一个Node节点
        Node<E> next;
        //指向上一个Node节点
        Node<E> prev;

        Node(Node<E> prev, E element, Node<E> next) {
            this.item = element;
            this.next = next;
            this.prev = prev;
        }
    }

    /**
     * 返回一个倒序遍历的迭代器
     */
    public Iterator<E> descendingIterator() {
        return new DescendingIterator();
    }

    /**
     * 降序迭代器
     */
    private class DescendingIterator implements Iterator<E> {
        private final ListItr itr = new ListItr(size());
        public boolean hasNext() {
            return itr.hasPrevious();
        }
        public E next() {
            return itr.previous();
        }
        public void remove() {
            itr.remove();
        }
    }

    private LinkedList<E> superClone() {
        try {
            return (LinkedList<E>) super.clone();
        } catch (CloneNotSupportedException e) {
            throw new InternalError(e);
        }
    }

    /**
     * 浅克隆
     */
    public Object clone() {
        LinkedList<E> clone = superClone();

        clone.first = clone.last = null;
        clone.size = 0;
        clone.modCount = 0;

        for (Node<E> x = first; x != null; x = x.next)
            clone.add(x.item);

        return clone;
    }

    /**
     * 返回一个包含列表所有元素的数组
     */
    public Object[] toArray() {
        Object[] result = new Object[size];
        int i = 0;
        for (Node<E> x = first; x != null; x = x.next)
            result[i++] = x.item;
        return result;
    }

    /**
     * 返回一个包含列表所有元素的数组,元素的顺序为从第一个到最后一个。返回元素数组的类型
     * 与指定数组的类型一致。如果列表大小适合指定的数组,则返回该数组。 否则,将为新数组分配指定
     * 数组的运行时类型和此列表的大小。
     *
     * 如果列表的空间适合指定的数组(数组比列表有更多的元素),紧跟在列表末尾之后的数组中的元素设置
     * 为null(仅当调用者知道列表不包含任何null元素时,这在确定列表长度时很有用。)
     */
    @SuppressWarnings("unchecked")
    public <T> T[] toArray(T[] a) {
        if (a.length < size)
            a = (T[])java.lang.reflect.Array.newInstance(
                    a.getClass().getComponentType(), size);
        int i = 0;
        Object[] result = a;
        for (Node<E> x = first; x != null; x = x.next)
            result[i++] = x.item;

        if (a.length > size)
            a[size] = null;

        return a;
    }

    private static final long serialVersionUID = 876323262645176354L;

    /**
     * 序列化
     */
    private void writeObject(java.io.ObjectOutputStream s)
            throws java.io.IOException {
        // Write out any hidden serialization magic
        s.defaultWriteObject();

        // Write out size
        s.writeInt(size);

        // Write out all elements in the proper order.
        for (Node<E> x = first; x != null; x = x.next)
            s.writeObject(x.item);
    }

    /**
     * 反序列化
     */
    @SuppressWarnings("unchecked")
    private void readObject(java.io.ObjectInputStream s)
            throws java.io.IOException, ClassNotFoundException {
        // Read in any hidden serialization magic
        s.defaultReadObject();

        // Read in size
        int size = s.readInt();

        // Read in all elements in the proper order.
        for (int i = 0; i < size; i++)
            linkLast((E)s.readObject());
    }

    /**
     * 创建一个可分割的迭代器
     */
    @Override
    public Spliterator<E> spliterator() {
        return new LLSpliterator<E>(this, -1, 0);
    }

    /** Spliterators.IteratorSpliterator 的定制版本 */
    static final class LLSpliterator<E> implements Spliterator<E> {
        static final int BATCH_UNIT = 1 << 10;  // batch array size increment
        static final int MAX_BATCH = 1 << 25;  // max batch array size;
        final LinkedList<E> list; // null OK unless traversed
        Node<E> current;      // current node; null until initialized
        int est;              // size estimate; -1 until first needed
        int expectedModCount; // initialized when est set
        int batch;            // batch size for splits

        LLSpliterator(LinkedList<E> list, int est, int expectedModCount) {
            this.list = list;
            this.est = est;
            this.expectedModCount = expectedModCount;
        }

        final int getEst() {
            int s; // force initialization
            final LinkedList<E> lst;
            if ((s = est) < 0) {
                if ((lst = list) == null)
                    s = est = 0;
                else {
                    expectedModCount = lst.modCount;
                    current = lst.first;
                    s = est = lst.size;
                }
            }
            return s;
        }

        public long estimateSize() { return (long) getEst(); }

        public Spliterator<E> trySplit() {
            Node<E> p;
            int s = getEst();
            if (s > 1 && (p = current) != null) {
                int n = batch + BATCH_UNIT;
                if (n > s)
                    n = s;
                if (n > MAX_BATCH)
                    n = MAX_BATCH;
                Object[] a = new Object[n];
                int j = 0;
                do { a[j++] = p.item; } while ((p = p.next) != null && j < n);
                current = p;
                batch = j;
                est = s - j;
                return Spliterators.spliterator(a, 0, j, Spliterator.ORDERED);
            }
            return null;
        }

        public void forEachRemaining(Consumer<? super E> action) {
            Node<E> p; int n;
            if (action == null) throw new NullPointerException();
            if ((n = getEst()) > 0 && (p = current) != null) {
                current = null;
                est = 0;
                do {
                    E e = p.item;
                    p = p.next;
                    action.accept(e);
                } while (p != null && --n > 0);
            }
            if (list.modCount != expectedModCount)
                throw new ConcurrentModificationException();
        }

        public boolean tryAdvance(Consumer<? super E> action) {
            Node<E> p;
            if (action == null) throw new NullPointerException();
            if (getEst() > 0 && (p = current) != null) {
                --est;
                E e = p.item;
                current = p.next;
                action.accept(e);
                if (list.modCount != expectedModCount)
                    throw new ConcurrentModificationException();
                return true;
            }
            return false;
        }

        public int characteristics() {
            return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
        }
    }

}