导读:pyecharts是一款将python与echarts结合的强大的数据可视化工具,本文将为你阐述pyecharts的使用细则。
前言
我们都知道python上的一款可视化工具matplotlib,而前些阵子做一个Spark项目的时候用到了百度开源的一个可视化JS工具-Echarts,可视化类型非常多,但是得通过导入js库在Java Web项目上运行,平时用Python比较多,于是就在想有没有Python与Echarts结合的轮子。Google后,找到一个国人开发的一个Echarts与Python结合的轮子:pyecharts,下面就来简述下pyecharts一些使用细则:
安装
[Python]
纯文本查看
复制代码
1 | pip install pyecharts |
现在我们来开始正式使用pycharts,这里我们直接使用官方的数据:
柱状图-Bar
[Python]
纯文本查看
复制代码
01 02 03 04 05 06 07 08 09 10 11 12 13 14 | //导入柱状图-Barfrom pyecharts import Bar//设置行名columns = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]//设置数据data1 = [2.0, 4.9, 7.0, 23.2, 25.6, 76.7, 135.6, 162.2, 32.6, 20.0, 6.4, 3.3]data2 = [2.6, 5.9, 9.0, 26.4, 28.7, 70.7, 175.6, 182.2, 48.7, 18.8, 6.0, 2.3]//设置柱状图的主标题与副标题bar = Bar("柱状图", "一年的降水量与蒸发量")//添加柱状图的数据及配置项bar.add("降水量", columns, data1, mark_line=["average"], mark_point=["max", "min"])bar.add("蒸发量", columns, data2, mark_line=["average"], mark_point=["max", "min"])//生成本地文件(默认为.html文件)bar.render() |
运行结果如下:
饼图-Pie
[Python]
纯文本查看
复制代码
01 02 03 04 05 06 07 08 09 10 | //导入饼图Piefrom pyecharts import Pie//设置主标题与副标题,标题设置居中,设置宽度为900pie = Pie("饼状图", "一年的降水量与蒸发量",title_pos='center',width=900)//加入数据,设置坐标位置为【25,50】,上方的colums选项取消显示pie.add("降水量", columns, data1 ,center=[25,50],is_legend_show=False)//加入数据,设置坐标位置为【75,50】,上方的colums选项取消显示,显示label标签pie.add("蒸发量", columns, data2 ,center=[75,50],is_legend_show=False,is_label_show=True)//保存图表pie.render() |
箱体图-Boxplot
[Python]
纯文本查看
复制代码
1 2 3 4 5 6 7 8 9 | //导入箱型图Boxplotfrom pyecharts import Boxplot boxplot = Boxplot("箱形图", "一年的降水量与蒸发量")x_axis = ['降水量','蒸发量']y_axis = [data1,data2]//prepare_data方法可以将数据转为嵌套的 [min, Q1, median (or Q2), Q3, max]yaxis = boxplot.prepare_data(y_axis) boxplot.add("天气统计", x_axis, _yaxis)boxplot.render() |
折线图-Line
[Python]
纯文本查看
复制代码
1 2 3 4 5 6 | from pyecharts import Lineline = Line("折线图","一年的降水量与蒸发量")//is_label_show是设置上方数据是否显示line.add("降水量", columns, data1, is_label_show=True)line.add("蒸发量", columns, data2, is_label_show=True)line.render() |
简单的几行代码就可以将数据进行非常好看的可视化,而且还是动态的,在这里还是要安利一下jupyter,pyecharts在v0.1.9.2版本开始,在jupyter上直接调用实例(例如上方直接调用bar)就可以将图表直接表示出来,非常方便。
笔者数了数,目前pyecharts上的图表大概支持到二十多种,这里就不一一指出了。
总结
- 导入相关图表包
- 进行图表的基础设置,创建图表对象
- 利用add()方法进行数据输入与图表设置(可以使用print_echarts_options()来输出所有可配置项)
- 利用render()方法来进行图表保存
转载
--
更多技术资讯可关注:itheimaGZ获取