二叉树学习以及总结

2,429 阅读3分钟

二叉树

高度,深度,层

image-20191216111731279
高度,深度,层

​ 和我们生活中的定义是相似的。

存储方法

  • 基于指针或者引用的二叉链式存储法

    image-20191216112425565
    基于指针的存储法
  • 基于数组的顺序存储法

    image-20191216112705564
    基于数组的存储法

如果节点X存储在数组中下标为i的位置,下标为2 * i 的位置存储的就是左子节点,下标为2 * i + 1的位置存储的就是右子节点。反过来,下标 为i/2的位置存储就是它的父节点。通过这种方式,我们只要知道根节点存储的位置(一般情况下,为了方便计算子节点,根节点会存储在下标为1的位置),这样 就可以通过下标计算,把整棵树都串起来。

二叉树的遍历

  • 前序遍历是指,对于树中的任意节点来说,先打印这个节点,然后再打印它的左子树,最后打印它的右子树。
  • 中序遍历是指,对于树中的任意节点来说,先打印它的左子树,然后再打印它本身,最后打印它的右子树。
  • 后序遍历是指,对于树中的任意节点来说,先打印它的左子树,然后再打印它的右子树,最后打印这个节点本身。

二叉查找树

定义

  • 二叉查找树中,每个节点的值都大于左子树节点的值,小于右子树节点的值。不过,这只是针对没有重复数据的情况。对于存在重复数据的二叉查找树,我介绍了两种构建方法,一种是让每个节点存储多个值相同的数据;另一种是每个节点中存储一个数据。针对这种情况,我们只需要稍加改造原来的插入、删除、查找操作即可。

为什么要使用

  • 散列表中的数据是无序存储的,如果要输出有序的数据,需要先进行排序。而对于二叉查找树来说,我们只需要中序遍历,就可以在O(n)的时间复杂度内,输出有序的数据序列。
  • 散列表扩容耗时很多,而且当遇到散列冲突时,性能不稳定,尽管二叉查找树的性能不稳定,但是在工程中,我们最常用的平衡二叉查找树的性能非常稳定,时间复杂度稳定在O(logn)。
  • 笼统地来说,尽管散列表的查找等操作的时间复杂度是常量级的,但因为哈希冲突的存在,这个常量不一定比logn小,所以实际的查找速度可能不一定 比O(logn)快。加上哈希函数的耗时,也不一定就比平衡二叉查找树的效率高。
  • 散列表的构造比二叉查找树要复杂,需要考虑的东西很多。比如散列函数的设计、冲突解决办法、扩容、缩容等。平衡二叉查找树只需要考虑平衡性这一个问题,而且这个问题的解决方案比较成熟、固定。