Android 性能优化之布局(一)
前言
Android布局优化,是一个老生常谈的问题,以前都知道要减少布局的层级,可以UI优化,但是知其然不知其所以然,通过释然小师弟的LayoutInflater源码分析,我自己又去读了一遍源码,对于为什么这么做可以对性能有一个提升,在这里从setContentView开始,整理一下思路,做一个记录。
源码分析
override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity_layout)调用setContentView方法设置布局xml
init()
}
接下来我们分析一下setContentView是怎么设置xml
AppCompatActivity.java
/**
* @return The {@link AppCompatDelegate} being used by this Activity.
*/
@NonNull
public AppCompatDelegate getDelegate() {
if (mDelegate == null) {
如果为空,创建一个AppCompatDelete
mDelegate = AppCompatDelegate.create(this, this);
}
return mDelegate;
继续向下追AppCompatDelegate是怎么创建的
/**
* Create an {@link androidx.appcompat.app.AppCompatDelegate} to use with {@code activity}.
*
* @param callback An optional callback for AppCompat specific events
*/
@NonNull
public static AppCompatDelegate create(@NonNull Activity activity,
@Nullable AppCompatCallback callback) {
这里return了一个Impl,继续追过去看
return new AppCompatDelegateImpl(activity, callback);
}
在AppCompatDelegateImpl中我们会找到3个setContentView重载函数,这里只贴出其中一个方法,有需要的同学可自行查看源码
@Override
public void setContentView(int resId) {
ensureSubDecor();
ViewGroup contentParent = mSubDecor.findViewById(android.R.id.content);
contentParent.removeAllViews();
//调用LayoutInflater把布局放到contentParent里面
LayoutInflater.from(mContext).inflate(resId, contentParent);
mAppCompatWindowCallback.getWrapped().onContentChanged();
}
到此发现setContentViwe是通LayoutInflater.from(mContext).inflate(resId, contentParent)将布局文件放到了contentParent中。需要进一步分析LayoutInflater的源码,看看是如何加载的xml,为什么布局的层级会影响性能。
public View inflate(@LayoutRes int resource, @Nullable ViewGroup root) {
继续查看inflate做了些什么
return inflate(resource, root, root != null);
}
public View inflate(@LayoutRes int resource, @Nullable ViewGroup root, boolean attachToRoot) {
final Resources res = getContext().getResources();
if (DEBUG) {
Log.d(TAG, "INFLATING from resource: \"" + res.getResourceName(resource) + "\" ("
+ Integer.toHexString(resource) + ")");
}
此处调用XmlResourceParser这是一个xml解析接口以获取xml资源
,Android默认的xml解析器是XmlPullParser
final XmlResourceParser parser = res.getLayout(resource);
try {
此处再次调用inflate的重载函数进行xml的解析
return inflate(parser, root, attachToRoot);
} finally {
parser.close();
}
}
//这里贴出inflate重载函数的官方注释
For performance reasons, view inflation relies heavily on pre-processing of
XML files that is done at build time. Therefore, it is not currently possible
to use LayoutInflater with an XmlPullParser over a plain XML file at runtime;
it only works with an XmlPullParser returned from a compiled resource
出于性能原因,视图的inflation是在构建的时候预编译解析的。因此,当前无法在运行时通过纯XML文件在XmlPullParser中使用LayoutInflater。
此处我的理解就是布局文件在编译的时候,提取被解析成xml,下面看源码中会发现,布局文件解析是通过反射创建View对象
由于代码过长,贴出部分关键代码
public View inflate(XmlPullParser parser, @Nullable ViewGroup root, boolean attachToRoot) {
synchronized (mConstructorArgs) {
/**省略代码**/
//定义返回值,初始化值为传入的root
View result = root;
try {
// Look for the root node.
int type;
while ((type = parser.next()) != XmlPullParser.START_TAG &&
type != XmlPullParser.END_DOCUMENT) {
// Empty
}
if (type != XmlPullParser.START_TAG) {
throw new InflateException(parser.getPositionDescription()
+ ": No start tag found!");
}//对START_TAG,END_DOCUMENT,事件进行解析处理
final String name = parser.getName();//获取当前的事件标签
if (TAG_MERGE.equals(name)) {
if (root == null || !attachToRoot) {
throw new InflateException("<merge /> can be used only with a valid "
+ "ViewGroup root and attachToRoot=true");
}
//如果使用了merge标签,那么就在此进行递归处理。使用merge标签需注意,必须要有父布局并且要依赖父布局加载,不然会报异常
rInflate(parser, root, inflaterContext, attrs, false);//此处圈起来
} else {
//如果没有使用merge,那么创建一个临时的根视图temp
// Temp is the root view that was found in the xml
final View temp = createViewFromTag(root, name, inflaterContext, attrs);
ViewGroup.LayoutParams params = null;
if (root != null) {
if (DEBUG) {
System.out.println("Creating params from root: " +
root);
}
// Create layout params that match root, if supplied
params = root.generateLayoutParams(attrs);
if (!attachToRoot) {
// Set the layout params for temp if we are not
// attaching. (If we are, we use addView, below)
temp.setLayoutParams(params);//临时的params
}
}
/**省略代码**/
//递归子布局
rInflateChildren(parser, temp, attrs, true);
// Decide whether to return the root that was passed in or the
// top view found in xml.
if (root == null || !attachToRoot) {
result = temp;//将临时根视图赋值给开始定义的返回值result
}
}
/**省略代码**/
return result;
}
}
final void rInflateChildren(XmlPullParser parser, View parent, AttributeSet attrs,
boolean finishInflate) throws XmlPullParserException, IOException {
rInflate(parser, parent, parent.getContext(), attrs, finishInflate);
}
到这里会发现不论哪种方式,最终都会调用rInflate()函数加载xml然后在这个函数中
又会调用一个很重要的函数createViewFromTag(),接下来分析一下这个函数
View createViewFromTag(View parent, String name, Context context, AttributeSet attrs,
boolean ignoreThemeAttr) {
if (name.equals("view")) {
name = attrs.getAttributeValue(null, "class");
}
// Apply a theme wrapper, if allowed and one is specified.
if (!ignoreThemeAttr) {
final TypedArray ta = context.obtainStyledAttributes(attrs, ATTRS_THEME);
final int themeResId = ta.getResourceId(0, 0);
if (themeResId != 0) {
context = new ContextThemeWrapper(context, themeResId);
}
ta.recycle();
}
if (name.equals(TAG_1995)) {
// Let's party like it's 1995!
return new BlinkLayout(context, attrs);
}
try {
View view;
//调用Factory来创建View
if (mFactory2 != null) {
view = mFactory2.onCreateView(parent, name, context, attrs);
} else if (mFactory != null) {
view = mFactory.onCreateView(name, context, attrs);
} else {
view = null;
}
if (view == null && mPrivateFactory != null) {
view = mPrivateFactory.onCreateView(parent, name, context, attrs);
}
if (view == null) {
final Object lastContext = mConstructorArgs[0];
mConstructorArgs[0] = context;
try {
if (-1 == name.indexOf('.')) {//含有"."tag的控件 比如一些自定义view
view = onCreateView(parent, name, attrs);
} else {
view = createView(name, null, attrs);
}
} finally {
mConstructorArgs[0] = lastContext;
}
}
return view;
}
/**省略代码**/
}
这里首先会用Factory.onCreateView获取一个View对象,如果获取不到,最终会调用createView()函数创建View对象
public final View createView(String name, String prefix, AttributeSet attrs)
throws ClassNotFoundException, InflateException {
Constructor<? extends View> constructor = sConstructorMap.get(name);
if (constructor != null && !verifyClassLoader(constructor)) {
constructor = null;
sConstructorMap.remove(name);
}
Class<? extends View> clazz = null;
try {
Trace.traceBegin(Trace.TRACE_TAG_VIEW, name);
if (constructor == null) {
// Class not found in the cache, see if it's real, and try to add it
clazz = mContext.getClassLoader().loadClass(
prefix != null ? (prefix + name) : name).asSubclass(View.class);
if (mFilter != null && clazz != null) {
boolean allowed = mFilter.onLoadClass(clazz);
if (!allowed) {
failNotAllowed(name, prefix, attrs);
}
}
constructor = clazz.getConstructor(mConstructorSignature);
constructor.setAccessible(true);
sConstructorMap.put(name, constructor);
} else {
// If we have a filter, apply it to cached constructor
if (mFilter != null) {
// Have we seen this name before?
Boolean allowedState = mFilterMap.get(name);
if (allowedState == null) {
// New class -- remember whether it is allowed
clazz = mContext.getClassLoader().loadClass(
prefix != null ? (prefix + name) : name).asSubclass(View.class);
boolean allowed = clazz != null && mFilter.onLoadClass(clazz);
mFilterMap.put(name, allowed);
if (!allowed) {
failNotAllowed(name, prefix, attrs);
}
} else if (allowedState.equals(Boolean.FALSE)) {
failNotAllowed(name, prefix, attrs);
}
}
}
Object lastContext = mConstructorArgs[0];
if (mConstructorArgs[0] == null) {
// Fill in the context if not already within inflation.
mConstructorArgs[0] = mContext;
}
Object[] args = mConstructorArgs;
args[1] = attrs;
//根据获取的构造器实例化一个View的对象
final View view = constructor.newInstance(args);
if (view instanceof ViewStub) {
// Use the same context when inflating ViewStub later.
final ViewStub viewStub = (ViewStub) view;
viewStub.setLayoutInflater(cloneInContext((Context) args[0]));
}
mConstructorArgs[0] = lastContext;
return view;
}
总结
1.从第一步在onCreate中调用setContentViwe设置xml开始,一步一步查看源码,可以看到xml通过Layoutinflater解析实例化成一个View,是需要XmlPullParser解析xml,Java反射来操作创建View,这是一个很耗时的过程。如果布局层级过于复杂,那么递归调用所消耗的数据也就越长,执行反射的次数也会增加,就会带来性能上的问题。
2.使用merge标签可以减少布局的嵌套,减少了布局层级,那么创建view的时候可以让递归调用的时间缩短,反射的次数减少,从而达到一个性能的优化。
3.使用约束布局ConstraintLayout,可以有效减少布局时候的嵌套问题
当然,UI性能的优化不止于布局层级方面,View的过度绘制的优化,使用ViewStub进行懒加载,使用AsyncLayoutInflater异步加载布局等。Android10中新增了一个函数tryInflatePrecompiled,可以有效的解决布局方面优化的问题,这个函数我就在此不做赘述了,可以移步下方链接查看。
写在最后
感谢 「Android10源码分析」为什么复杂布局会产生卡顿?-- LayoutInflater详解 释然小师弟
本文未经允许禁止转载