前言
文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理。
作者: 周萝卜 源自:萝卜大杂烩
PS:如有需要Python学习资料的小伙伴可以加点击下方链接自行获取
数据文件分析
先来看下我们拿到的文件,都有什么数据,哪些是我们可以利用起来的。
1、GDP 总量数据,这是我们研究的重点数据文件,里面囊括了世界各个国家和地区的历史 GDP 数据,我把它命名为“GDP_data.csv”。




各个收入等级分析
各个收入等级分布
首先我们先来看下世界各国分布在不同收入等级的情况

下面我们再具体看下不同收入等级中各个国家具体的 GDP 总量
高收入国家
首先是高收入国家 top10 的 GDP 总量
我们首先拿到高等收入的国家信息,再与 gdp 信息数据合并,最后得到 top10 数据
# 高收入国家2018年的GDP
high = country_data[country_data['Income_Group'] == '高收入国家']
high_gdp = pd.merge(high, gdp, how='inner')
high_gdp['2018'] = high_gdp['2018'].apply(lambda x: x/1000000000000)
high_gdp_top10 = high_gdp[['Country Name', 'Country Code', '2018']].sort_values(by='2018', ascending=False)[:10]

我们再把榜单扩展到 top20,能看到,欧洲国家还是居多的,而中东的两个土豪也成功上榜了。


中等收入国家
接下来看看中等收入国家的 top10 情况

来看看中美两个总体上占据世界 GDP 的比例情况

再来看下 top20 的情况

下面就是中低等收入的国家了,还是有很多熟悉的面孔啊

top20 情况

最后就是低收入国家了,可以看到,在这些国家中,要不就是战乱频仍的国度,要不就是资源匮乏的小国,他们的经济建设之路还很漫长呢。


2018年 GDP 排行
先来看看2018年 GDP 总体排行的 top10 吧

那么再来看看 GDP 总量倒数的10个国家呢 都是一些不大的国家,差距还是太大了!
历年各国 GDP 走势
我们先来看一下 GDP 总量排行前五的国家,历年 GDP 总量的走势情况
美国





世界 GDP 地图
下面我们通过世界地图的方式来看看 GDP 的分布情况
我们先进行数据处理,把国家代码和 GDP 数据相结合
country_code = pd.read_json('countries.json')
country_code.rename(columns={'iso3': 'Country Code'}, inplace=True)
conutry_code_name = country_code[['name', 'Country Code']]
country_gdp_code = pd.merge(country_gdp, conutry_code_name, on='Country Code', how='inner')
由此,我们可以做出一张 GDP 总量的地图分布图

我们再去掉中美两国,看看剩余国家的 GDP 情况

GDP 增长率
下面我们再来看看 GDP 增长率的情况,有的国家 GDP 本来总量就高,而且增长率还非常不错,那么未来的经济形式一定前途无量;而有的国家则举步维艰,低 GDP 总量再加上惨淡的增长率,未来的日子很难啊。
增长率 top10

而印度则不一样,它本身的 GDP 总量已经非常高了,竟然还有这么高的 GDP 增长率,其未来的经济一片大好啊!
增长率 bottom10
再来看下增长率排名垫底的10个国家,这就比较闹心了

中美印对比

而美国的增长率常年在2%和1%之间震荡,好像还蛮有规律的。
对于我国来说,增长率已经从以前恐怖的10%慢慢回落了,但是经济增长的趋势是没法阻挡的!
增长率地图
最后还是在世界地图中整体看看 GDP 增长率的分布情况
