tomcat请求处理原理

371 阅读8分钟

Connector容器主要负责解析socket请求,在tomcat中的源码位于org.apache.catalina.connector和org.apache.coyote包路径下;通过上两节的分析,我们知道了Connector是Service的子容器,而Service又是Server的子容器。在server.xml文件中配置,然后在Catalina类中通过Digester完成实例化。在server.xml中默认配置了两种Connector的实现,分别用来处理Http请求和AJP请求。其实Connector的实现一共有以下三种: 1、Http Connector:解析HTTP请求,又分为BIO Http Connector和NIO Http Connector,即阻塞IO Connector和非阻塞IO Connector。本文主要分析NIO Http Connector的实现过程。 2、AJP:基于AJP协议,用于Tomcat与HTTP服务器通信定制的协议,能提供较高的通信速度和效率。如与Apache服务器集成时,采用这个协议。 3、APR HTTP Connector:用C实现,通过JNI调用的。主要提升对静态资源(如HTML、图片、CSS、JS等)的访问性能。 具体要使用哪种Connector可以在server.xml文件中通过protocol属性配置如下: 复制代码然后看一下Connector的构造器: 代码清单1 //默认connector为HTTP/1.1 NIO public Connector() { this("org.apache.coyote.http11.Http11NioProtocol"); } //根据protocol实现Connector public Connector(String protocol) { boolean aprConnector = AprLifecycleListener.isAprAvailable() && AprLifecycleListener.getUseAprConnector(); if ("HTTP/1.1".equals(protocol) || protocol == null) { if (aprConnector) { protocolHandlerClassName = "org.apache.coyote.http11.Http11AprProtocol"; } else { protocolHandlerClassName = "org.apache.coyote.http11.Http11NioProtocol"; } } else if ("AJP/1.3".equals(protocol)) { if (aprConnector) { protocolHandlerClassName = "org.apache.coyote.ajp.AjpAprProtocol"; } else { protocolHandlerClassName = "org.apache.coyote.ajp.AjpNioProtocol"; } } else { protocolHandlerClassName = protocol; }

    // 通过反射实例化一个protocolHandle,之后对请求数据的解析都由该protocolHandle完成,例如Http11AprProtocol
    ProtocolHandler p = null;
    try {
        Class<?> clazz = Class.forName(protocolHandlerClassName);
        p = (ProtocolHandler) clazz.getConstructor().newInstance();
    } catch (Exception e) {
        log.error(sm.getString(
                "coyoteConnector.protocolHandlerInstantiationFailed"), e);
    } finally {
        this.protocolHandler = p;
    }

    // Default for Connector depends on this system property
    setThrowOnFailure(Boolean.getBoolean("org.apache.catalina.startup.EXIT_ON_INIT_FAILURE"));
}

复制代码通过分析Connector构造器的源码可以知道,每一个Connector对应了一个protocolHandler,一个protocolHandler被设计用来监听服务器某个端口的网络请求,但并不负责处理请求(处理请求由Container组件完成)。下面就以Http11NioProtocol为例分析Http请求的解析过程。 在Connector的startInterval方法中启动了protocolHandler,代码如下: 代码清单2 protected void startInternal() throws LifecycleException { // Validate settings before starting if (getPort() < 0) { throw new LifecycleException(sm.getString( "coyoteConnector.invalidPort", Integer.valueOf(getPort()))); }

    setState(LifecycleState.STARTING);

    try {
        protocolHandler.start();  //启动protocolHandler
    } catch (Exception e) {
        throw new LifecycleException(
                sm.getString("coyoteConnector.protocolHandlerStartFailed"), e);
    }
}

复制代码Http11NioProtocol创建一个org.apache.tomcat.util.net.NioEndpoint实例,然后将监听端口并解析请求的工作全被委托给NioEndpoint实现。tomcat在使用Http11NioProtocol解析HTTP请求时一共设计了三种线程,分别为Acceptor,Poller和Worker。 1、Acceptor线程 Acceptor实现了Runnable接口,根据其命名就知道它是一个接收器,负责接收socket,其接收方法是serverSocket.accept()方式,获得SocketChannel对象,然后封装成tomcat自定义的org.apache.tomcat.util.net.NioChannel。虽然是Nio,但在接收socket时仍然使用传统的方法,使用阻塞方式实现。Acceptor以线程池的方式被创建和管理,在NioEndpoint的startInternal()方法中完成Acceptor的启动,源码如下: 代码清单3 public void startInternal() throws Exception {

    if (!running) {
        running = true;
        paused = false;
        processorCache = new SynchronizedStack<>(SynchronizedStack.DEFAULT_SIZE,
                socketProperties.getProcessorCache());
        eventCache = new SynchronizedStack<>(SynchronizedStack.DEFAULT_SIZE,
                socketProperties.getEventCache());
        nioChannels = new SynchronizedStack<>(SynchronizedStack.DEFAULT_SIZE,
                socketProperties.getBufferPool());

        // Create worker collection
        if (getExecutor() == null) {
            createExecutor();
        }
        //设置最大连接数,默认值为maxConnections = 10000,通过同步器AQS实现。
        initializeConnectionLatch();
        //创建、配置并启动线程Pooler
        pollers = new Poller[getPollerThreadCount()];    
        for (int i = 0; i < pollers.length; i++) {
            pollers[i] = new Poller();
            Thread pollerThread = new Thread(pollers[i], getName() + "-ClientPoller-" + i);
            pollerThread.setPriority(threadPriority);
            pollerThread.setDaemon(true);
            pollerThread.start();
        }
        startAcceptorThreads(); //启动Acceptor线程
    }
}

复制代码继续追踪startAcceptorThreads的源码 代码清单4 protected final void startAcceptorThreads() { int count = getAcceptorThreadCount(); //默认值为1 acceptors = new ArrayList<>(count);

    for (int i = 0; i < count; i++) {
        Acceptor<U> acceptor = new Acceptor<>(this);
        String threadName = getName() + "-Acceptor-" + i;
        acceptor.setThreadName(threadName);
        acceptors.add(acceptor);
        Thread t = new Thread(acceptor, threadName);
        t.setPriority(getAcceptorThreadPriority());
        t.setDaemon(getDaemon());
        t.start();
    }
}

复制代码Acceptor线程的核心代码在它的run方法中 代码清单5 public void run() {

    int errorDelay = 0;

    // Loop until we receive a shutdown command
    while (endpoint.isRunning()) {
        // endpoint阻塞
        while (endpoint.isPaused() && endpoint.isRunning()) {
            state = AcceptorState.PAUSED;
            try {
                Thread.sleep(50);
            } catch (InterruptedException e) {
                // Ignore
            }
        }

        if (!endpoint.isRunning()) {
            break;
        }
        state = AcceptorState.RUNNING;
        try {
            //连接数到达最大值时,await等待释放connection,在Endpoint的startInterval方法中设置了最大连接数
            endpoint.countUpOrAwaitConnection();

            // Endpoint might have been paused while waiting for latch
            // If that is the case, don't accept new connections
            if (endpoint.isPaused()) {
                continue;
            }
            //U是一个socketChannel
            U socket = null;           
            try {
                //接收socket请求
                socket = endpoint.serverSocketAccept();
            } catch (Exception ioe) {
                // We didn't get a socket
                endpoint.countDownConnection();
                if (endpoint.isRunning()) {
                    errorDelay = handleExceptionWithDelay(errorDelay);
                    throw ioe;
                } else {
                    break;
                }
            }
            // Successful accept, reset the error delay
            errorDelay = 0;

            // Configure the socket
            if (endpoint.isRunning() && !endpoint.isPaused()) {
                // endpoint的setSocketOptions方法对socket进行配置
                if (!endpoint.setSocketOptions(socket)) {
                    endpoint.closeSocket(socket);
                }
            } else {
                endpoint.destroySocket(socket);
            }
        } catch (Throwable t) {
            ExceptionUtils.handleThrowable(t);
            String msg = sm.getString("endpoint.accept.fail");
            // APR specific.
            // Could push this down but not sure it is worth the trouble.
            if (t instanceof Error) {
                Error e = (Error) t;
                if (e.getError() == 233) {
                    // Not an error on HP-UX so log as a warning
                    // so it can be filtered out on that platform
                    // See bug 50273
                    log.warn(msg, t);
                } else {
                    log.error(msg, t);
                }
            } else {
                    log.error(msg, t);
            }
        }
    }
    state = AcceptorState.ENDED;
}

复制代码Acceptor完成了socket请求的接收,然后交给NioEndpoint 进行配置,继续追踪Endpoint的setSocketOptions方法。 代码清单6 protected boolean setSocketOptions(SocketChannel socket) { try { //设置为非阻塞 socket.configureBlocking(false); Socket sock = socket.socket(); socketProperties.setProperties(sock);

        NioChannel channel = nioChannels.pop();
        if (channel == null) {
            SocketBufferHandler bufhandler = new SocketBufferHandler(
                    socketProperties.getAppReadBufSize(),
                    socketProperties.getAppWriteBufSize(),
                    socketProperties.getDirectBuffer());
            if (isSSLEnabled()) {
                channel = new SecureNioChannel(socket, bufhandler, selectorPool, this);
            } else {
                channel = new NioChannel(socket, bufhandler);
            }
        } else {
            channel.setIOChannel(socket);
            channel.reset();
        }
        getPoller0().register(channel);  //调用Poller的register方法,完成channel的注册。
    } catch (Throwable t) {
        ExceptionUtils.handleThrowable(t);
        try {
            log.error("", t);
        } catch (Throwable tt) {
            ExceptionUtils.handleThrowable(tt);
        }
        // Tell to close the socket
        return false;
    }
    return true;
}

复制代码分析setSocketOptions的源码可以知道,该方法的主要功能是利用传入的SocketChannel参数生成SecureNioChannel或者NioChannel,然后注册到Poller线程的selector中,可以进一步了解Java nio的相关知识,对这一块内容有更深的理解。 2、Poolor线程 Pollor同样实现了Runnable接口,是NioEndpoint类的内部类。在Endpoint的startInterval方法中创建、配置并启动了Pollor线程,见代码清单4。Poolor主要职责是不断轮询其selector,检查准备就绪的socket(有数据可读或可写),实现io的多路复用。其构造其中初始化了selector。 public Poller() throws IOException { this.selector = Selector.open(); } 复制代码在分析Acceptor的时候,提到了Acceptor接受到一个socket请求后,调用NioEndpoint的setSocketOptions方法(代码清单6),该方法生成了NioChannel后调用Pollor的register方法生成PoolorEvent后加入到Eventqueue,register方法的源码如下: 代码清单7 public void register(final NioChannel socket) { socket.setPoller(this); NioSocketWrapper ka = new NioSocketWrapper(socket, NioEndpoint.this); socket.setSocketWrapper(ka); ka.setPoller(this); ka.setReadTimeout(getConnectionTimeout()); ka.setWriteTimeout(getConnectionTimeout()); ka.setKeepAliveLeft(NioEndpoint.this.getMaxKeepAliveRequests()); ka.setSecure(isSSLEnabled()); PollerEvent r = eventCache.pop(); ka.interestOps(SelectionKey.OP_READ);//this is what OP_REGISTER turns into. //生成PoolorEvent并加入到Eventqueue if (r == null) r = new PollerEvent(socket, ka, OP_REGISTER); else r.reset(socket, ka, OP_REGISTER); addEvent(r);
} 复制代码Pollor的核心代码也在其run方法中 代码清单8 public void run() { // 调用了destroy()方法后终止此循环 while (true) { boolean hasEvents = false; try { if (!close) { hasEvents = events(); if (wakeupCounter.getAndSet(-1) > 0) { //if we are here, means we have other stuff to do //非阻塞的 select keyCount = selector.selectNow(); } else { //阻塞selector,直到有准备就绪的socket keyCount = selector.select(selectorTimeout); } wakeupCounter.set(0); } if (close) { //该方法遍历了eventqueue中的所有PollorEvent,然后依次调用PollorEvent的run,将socket注册到selector中。 events();
timeout(0, false); try { selector.close(); } catch (IOException ioe) { log.error(sm.getString("endpoint.nio.selectorCloseFail"), ioe); } break; } } catch (Throwable x) { ExceptionUtils.handleThrowable(x); log.error("", x); continue; } //either we timed out or we woke up, process events first if (keyCount == 0) hasEvents = (hasEvents | events());

            Iterator<SelectionKey> iterator =
                    keyCount > 0 ? selector.selectedKeys().iterator() : null;
            // 遍历就绪的socket
            while (iterator != null && iterator.hasNext()) {
                SelectionKey sk = iterator.next();
                NioSocketWrapper attachment = (NioSocketWrapper) sk.attachment();
                // Attachment may be null if another thread has called
                // cancelledKey()
                if (attachment == null) {
                    iterator.remove();
                } else {
                    //调用processKey方法对有数据读写的socket进行处理,在分析Worker线程时会分析该方法
                    iterator.remove();
                    processKey(sk, attachment);
                }
            }
            //process timeouts
            timeout(keyCount, hasEvents);
        }//while

        getStopLatch().countDown();
    }

复制代码run方法中调用了events方法: 代码清单9 public boolean events() { boolean result = false; PollerEvent pe = null; for (int i = 0, size = events.size(); i < size && (pe = events.poll()) != null; i++) { result = true; try { pe.run(); //将pollerEvent中的每个socketChannel注册到selector中 pe.reset(); if (running && !paused) { eventCache.push(pe); //将注册了的pollerEvent加到endPoint.eventCache } } catch (Throwable x) { log.error("", x); } }

        return result;
    }

复制代码继续跟进PollerEvent的run方法: 代码清单10 public void run() { if (interestOps == OP_REGISTER) { try { //将SocketChannel注册到selector中,注册时间为SelectionKey.OP_READ读事件 socket.getIOChannel().register( socket.getPoller().getSelector(), SelectionKey.OP_READ, socketWrapper); } catch (Exception x) { log.error(sm.getString("endpoint.nio.registerFail"), x); } } else { final SelectionKey key = socket.getIOChannel().keyFor(socket.getPoller().getSelector()); try { if (key == null) { socket.socketWrapper.getEndpoint().countDownConnection(); } else { final NioSocketWrapper socketWrapper = (NioSocketWrapper) key.attachment(); if (socketWrapper != null) { //we are registering the key to start with, reset the fairness counter. int ops = key.interestOps() | interestOps; socketWrapper.interestOps(ops); key.interestOps(ops); } else { socket.getPoller().cancelledKey(key); } } } catch (CancelledKeyException ckx) { try { socket.getPoller().cancelledKey(key); } catch (Exception ignore) { } } } } 复制代码3、Worker线程 Worker线程即SocketProcessor是用来处理Socket请求的。SocketProcessor也同样是Endpoint的内部类。在Pollor的run方法中(代码清单8)监听到准备就绪的socket时会调用processKey方法进行处理: 代码清单11 protected void processKey(SelectionKey sk, NioSocketWrapper attachment) { try { if (close) { cancelledKey(sk); } else if (sk.isValid() && attachment != null) { //有读写事件就绪时 if (sk.isReadable() || sk.isWritable()) { if (attachment.getSendfileData() != null) { processSendfile(sk, attachment, false); } else { unreg(sk, attachment, sk.readyOps()); boolean closeSocket = false; // socket可读时,先处理读事件 if (sk.isReadable()) { //调用processSocket方法进一步处理 if (!processSocket(attachment, SocketEvent.OPEN_READ, true)) { closeSocket = true; } } //写事件 if (!closeSocket && sk.isWritable()) { //调用processSocket方法进一步处理 if (!processSocket(attachment, SocketEvent.OPEN_WRITE, true)) { closeSocket = true; } } if (closeSocket) { cancelledKey(sk); } } } } else { //invalid key cancelledKey(sk); } } catch (CancelledKeyException ckx) { cancelledKey(sk); } catch (Throwable t) { ExceptionUtils.handleThrowable(t); log.error("", t); } } 复制代码继续跟踪processSocket方法: 代码清单12 public boolean processSocket(SocketWrapperBase socketWrapper, SocketEvent event, boolean dispatch) { try { if (socketWrapper == null) { return false; } // 尝试循环利用之前回收的SocketProcessor对象,如果没有可回收利用的则 // 创建新的SocketProcessor对象 SocketProcessorBase sc = processorCache.pop(); if (sc == null) { 创建SocketProcessor,即Worker线程,基于线程池模式进行创建和管理 sc = createSocketProcessor(socketWrapper, event); } else { // 循环利用回收的SocketProcessor对象 sc.reset(socketWrapper, event); } Executor executor = getExecutor(); if (dispatch && executor != null) { //SocketProcessor实现了Runneble接口,可以直接传入execute方法进行处理 executor.execute(sc); } else { sc.run(); } } catch (RejectedExecutionException ree) { getLog().warn(sm.getString("endpoint.executor.fail", socketWrapper) , ree); return false; } catch (Throwable t) { ExceptionUtils.handleThrowable(t); getLog().error(sm.getString("endpoint.process.fail"), t); return false; } return true; }

//NioEndpoint中createSocketProcessor创建一个SocketProcessor。
protected SocketProcessorBase<NioChannel> createSocketProcessor(
        SocketWrapperBase<NioChannel> socketWrapper, SocketEvent event) {
    return new SocketProcessor(socketWrapper, event);
}

复制代码总结:Http11NioProtocol是基于Java Nio实现的,创建了Acceptor、Pollor和Worker线程实现多路io的复用。三类线程之间的关系如下图所示:

Acceptor和Pollor之间是生产者消费者模式的关系,Acceptor不断向EventQueue中添加PollorEvent,Pollor轮询检查EventQueue中就绪的PollorEvent,然后发送给Work线程进行处理。 分析完了Connector,下一篇将继续分析另一个核心组件Connector