##首先确定安装了jdk
如java -version出现 **如果您具有Java 8,则输出将如下所示:
java version "1.8.0_111"
Java(TM) SE Runtime Environment (build 1.8.0_111-b14)
Java HotSpot(TM) 64-Bit Server VM (build 25.111-b14, mixed mode)
下载
wget mirrors.tuna.tsinghua.edu.cn/apache/flin…
解压
tar -zxvf flink-1.8.2-bin-scala_2.12.tgz
启动
cd flink-1.8.2-bin-scala_2.12
./bin/start-cluster.sh
查看启动效果
在http://localhost:8081上检查Dispatcher的Web前端,并确保一切正常并正在运行。Web前端应报告一个可用的TaskManager实例。
tail flink-*-standalonesession-*.log
2019-10-29 10:50:35,563 INFO org.apache.flink.runtime.dispatcher.DispatcherRestEndpoint - http://localhost:8081 was granted leadership with leaderSessionID=00000000-0000-0000-0000-000000000000
2019-10-29 10:50:35,563 INFO org.apache.flink.runtime.dispatcher.DispatcherRestEndpoint - Web frontend listening at http://localhost:8081.
2019-10-29 10:50:36,503 INFO org.apache.flink.runtime.rpc.akka.AkkaRpcService - Starting RPC endpoint for org.apache.flink.runtime.resourcemanager.StandaloneResourceManager at akka://flink/user/resourcemanager .
2019-10-29 10:50:36,661 INFO org.apache.flink.runtime.rpc.akka.AkkaRpcService - Starting RPC endpoint for org.apache.flink.runtime.dispatcher.StandaloneDispatcher at akka://flink/user/dispatcher .
2019-10-29 10:50:36,785 INFO org.apache.flink.runtime.resourcemanager.StandaloneResourceManager - ResourceManager akka.tcp://flink@localhost:6123/user/resourcemanager was granted leadership with fencing token 00000000000000000000000000000000
2019-10-29 10:50:36,869 INFO org.apache.flink.runtime.resourcemanager.slotmanager.SlotManager - Starting the SlotManager.
2019-10-29 10:50:36,963 INFO org.apache.flink.runtime.dispatcher.StandaloneDispatcher - Dispatcher akka.tcp://flink@localhost:6123/user/dispatcher was granted leadership with fencing token 00000000-0000-0000-0000-000000000000
2019-10-29 10:50:36,965 INFO org.apache.flink.runtime.dispatcher.StandaloneDispatcher - Recovering all persisted jobs.
2019-10-29 10:50:48,395 INFO org.apache.flink.runtime.resourcemanager.StandaloneResourceManager - Ignoring outdated TaskExecutorGateway connection.
2019-10-29 10:50:48,572 INFO org.apache.flink.runtime.resourcemanager.StandaloneResourceManager - Registering TaskManager with ResourceID 1793c0ec8b3c0617e2c3ea4091acdc69 (akka.tcp://flink@127.0.0.1:44941/user/taskmanager_0) at ResourceManager
编写测试例子
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.ReduceFunction;
import org.apache.flink.api.java.utils.ParameterTool;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.util.Collector;
import static org.apache.flink.streaming.api.windowing.time.Time.seconds;
/**
* @author huangyiminghappy@163.com
* @className: SocketWindowWordCount
* @description: TODO
* @date 2019-10-29
*/
public class SocketWindowWordCount {
public static void main(String[] args) throws Exception {
// the port to connect to
final int port;
try {
final ParameterTool params = ParameterTool.fromArgs(args);
port = params.getInt("port");
} catch (Exception e) {
System.err.println("No port specified. Please run 'SocketWindowWordCount --port <port>'");
return;
}
// get the execution environment
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// get input data by connecting to the socket
DataStream<String> text = env.socketTextStream("localhost", port, "\n");
// parse the data, group it, window it, and aggregate the counts
DataStream<WordWithCount> windowCounts = text
.flatMap(new FlatMapFunction<String, WordWithCount>() {
@Override
public void flatMap(String value, Collector<WordWithCount> out) {
for (String word : value.split("\\s")) {
out.collect(new WordWithCount(word, 1L));
}
}
})
.keyBy("word")
.timeWindow( seconds(5), seconds(1))
.reduce(new ReduceFunction<WordWithCount>() {
@Override
public WordWithCount reduce(WordWithCount a, WordWithCount b) {
return new WordWithCount(a.word, a.count + b.count);
}
});
// print the results with a single thread, rather than in parallel
windowCounts.print().setParallelism(1);
env.execute("Socket Window WordCount");
}
// Data type for words with count
public static class WordWithCount {
public String word;
public long count;
public WordWithCount() {}
public WordWithCount(String word, long count) {
this.word = word;
this.count = count;
}
@Override
public String toString() {
return word + " : " + count;
}
}
}
服务端测试
-
运行 nc -l 0.0.0.0 9000
-
把刚才测试代码达成jar包运行:
./bin/flink run examples/streaming/SocketWindowWordCount.jar --port 9000
查看效果
nc -l 0.0.0.0 9000
lorem ipsum
ipsum ipsum ipsum
bye
tail -f log/flink-*-taskexecutor-*.out
lorem : 1
bye : 1
ipsum : 4