Map 接口定义的集合又称为查找表,用于存储所谓"key-value"映射对。Key可以看成是Value 的索引,作为key的对象在集合中不可重复。
HashMap
HashMap通过Node<K,V>数组+链表(红黑树)实现的key-value数据结构,每个Node有自己的key,value
public class HashMap<K,V> extends AbstractMap<K,V>
implements Map<K,V>, Cloneable, Serializable {
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // 默认容量 16
static final int MAXIMUM_CAPACITY = 1 << 30; // 最大容量 2^30
static final float DEFAULT_LOAD_FACTOR = 0.75f; // 默认扩容因子0.75
// 当链表元素个数到达8时,转化为红黑树
static final int TREEIFY_THRESHOLD = 8;
// 树中元素个数小于等于6时,由红黑树转位链表
static final int UNTREEIFY_THRESHOLD = 6;
static final int MIN_TREEIFY_CAPACITY = 64;
transient Node<K,V>[] table; // Node数组 需要注意:table的大小始终是2^n
transient int size; // 集合大小
// 扩容阈值,当元素个数达到多少时进行扩容,threshold = capacity * loadFactor
int threshold;
// 内部类,Node结点,单向链表
static class Node<K,V> implements Map.Entry<K,V> {
final int hash; // hash值
final K key;
V value;
Node<K,V> next; // next结点,单向链表
Node(int hash, K key, V value, Node<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}
public final int hashCode() {
return Objects.hashCode(key) ^ Objects.hashCode(value);
}
public final V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
}
}
// 内部类,TreeNode结点,红黑树
static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
TreeNode<K,V> parent; // 父节点
TreeNode<K,V> left; // 左子节点
TreeNode<K,V> right; // 右子节点
TreeNode<K,V> prev; // needed to unlink next upon deletion
boolean red; // 颜色:红或黑
TreeNode(int hash, K key, V val, Node<K,V> next) {
super(hash, key, val, next);
}
}
// 构造方法
public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " + loadFactor);
this.loadFactor = loadFactor;
// 计算扩容阈值
this.threshold = tableSizeFor(initialCapacity);
}
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}
public HashMap(Map<? extends K, ? extends V> m) {
this.loadFactor = DEFAULT_LOAD_FACTOR;
putMapEntries(m, false);
}
}
put方法
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;// 如果table为空,resize()
// (n - 1) & hash n为2的幂 n-1 转为2进制 - 15 ——> 1111 所有位都是1
// (n - 1) & hash 与运算,结果肯定在 0 - n-1 之间
if ((p = tab[i = (n - 1) & hash]) == null) // 如果table数组下标位置没有元素
tab[i] = newNode(hash, key, value, null); // 创建新元素
else {
Node<K,V> e; K k;
if (p.hash == hash && // hash 相等,key也相等
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
else if (p instanceof TreeNode) // 如果当前节点为红黑树,红黑树插入结点
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else { // 链表
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) { // 遍历链表,
p.next = newNode(hash, key, value, null);// 尾部新增一个结点
if (binCount >= TREEIFY_THRESHOLD - 1) // 如果链表长度过长(当前没有执行 ++binCount )
treeifyBin(tab, hash); // 将当前链表转为红黑树
break;
}
// 找到 hash 相等,key也相等 的 节点 e break
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
// 找到 hash 相等,key也相等的节点 e
if (e != null) {
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value; // value重新赋值
afterNodeAccess(e); // 空方法,LinkedHashMap中重写
return oldValue;
}
}
++modCount;
if (++size > threshold) // 当前size大于扩容阈值
resize(); // 扩容
afterNodeInsertion(evict); // 空方法,LinkedHashMap中重写
return null;
}
hash算法
// 取hash
static final int hash(Object key) {
int h; // 高16位和低16位做异或运算,保证hash的离散性
// 设想一下,如果n很小,假设为16的话,那么n-1即为15(0000 0000 0000 0000 0000 0000 0000 1111),
// 这样的值如果跟hashCode()直接做与操作,实际上只使用了哈希值的后4位。如果当哈希值的高位变化很大,低位变化很小,
// 这样很容易造成碰撞,所以把高低位都参与到计算中,从而解决了这个问题,而且也不会有太大的开销。
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
// 根据hash计算tab数组的下标 i = (n - 1) & hash
// 由于n始终是2的整数次方,n-1的二进制都为1 如15(1111) ;一个数和15做与运算,可以去掉15的最高位之前的数字
// 这样[与运算]可以实现和取模相同的效果
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
扩容
// 对table进行初始化或者扩容。
// 如果table为null,则对table进行初始化
// 如果对table扩容,因为每次扩容都是翻倍,与原来计算(n-1)&hash的结果相比,
// 节点要么就在原来的位置,要么就被分配到“原位置+旧容量”这个位置。
final Node<K,V>[] resize() {
// 新建oldTab数组保存扩容前的数组table
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length; // 当前数组大小
int oldThr = threshold; // 扩容阈值
int newCap, newThr = 0;
if (oldCap > 0) {
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && // newCap = 原容量翻倍
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // 扩容阈值翻倍
}
else if (oldThr > 0) // oldCap == 0 && oldThr > 0 说明计算了扩容阈值,但是table没有初始化
newCap = oldThr;
else { // 默认构造
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr; // 扩容阈值重新赋值
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
// 如果旧table不为空,将旧table中的元素复制到新的table中
if (oldTab != null) {
// 遍历旧哈希表,将旧哈希表中的数据复制到新的哈希表中
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)
// 重新取hash位置
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
// 将树中的node分离
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // 链表
// 因为每次扩容都是翻倍,与原来计算(n-1)&hash的结果相比,
// 节点要么就在原来的位置,要么就被分配到“原位置+旧容量”这个位置。
// 所以构建两个链表(loTail和hiTail),loTail在原来的位置,hiTail在“原位置+旧容量”的位置
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead; // 低位链表
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;// 高位链表
}
}
}
}
}
return newTab;
}
get方法
public V get(Object key) {
Node<K,V> e;
return (e = getNode(hash(key), key)) == null ? null : e.value;
}
final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {// 根据hash找到数组的下标
if (first.hash == hash && // first结点 hash 相等,key也相等
((k = first.key) == key || (key != null && key.equals(k))))
return first;
if ((e = first.next) != null) { // 存在后续结点
if (first instanceof TreeNode) // 如果是红黑树,通过红黑树查询
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
do {
// 遍历链表 找到 hash 相等,key也相等 的结点
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}
remove方法
public V remove(Object key) {
Node<K,V> e;
return (e = removeNode(hash(key), key, null, false, true)) == null ?
null : e.value;
}
final Node<K,V> removeNode(int hash, Object key, Object value, boolean matchValue, boolean movable) {
Node<K,V>[] tab; Node<K,V> p; int n, index;
if ((tab = table) != null && (n = tab.length) > 0 &&
(p = tab[index = (n - 1) & hash]) != null) { // 根据hash找到数组的下标
Node<K,V> node = null, e; K k; V v;
if (p.hash == hash && // 第一个结点 hash 相等,key也相等
((k = p.key) == key || (key != null && key.equals(k))))
node = p;
else if ((e = p.next) != null) { // 存在后续结点
if (p instanceof TreeNode) // 如果是红黑树,通过红黑树查询
node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
else {
do {
// 遍历链表 找到 hash 相等,key也相等 的结点
if (e.hash == hash &&
((k = e.key) == key ||
(key != null && key.equals(k)))) {
node = e;
break;
}
p = e;
} while ((e = e.next) != null);
}
}
// node 不为null
if (node != null && (!matchValue || (v = node.value) == value ||
(value != null && value.equals(v)))) {
if (node instanceof TreeNode) // 移除红黑树中的结点
((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
else if (node == p)
tab[index] = node.next;
else
p.next = node.next;
++modCount;
--size;
afterNodeRemoval(node); // 空方法,LinkedHashMap中重写
return node;
}
}
return null;
}
Hashtable
Hashtable使用synchronized 来进行同步
public class Hashtable<K,V> extends Dictionary<K,V>
implements Map<K,V>, Cloneable, java.io.Serializable {
private transient Entry<?,?>[] table; // table
private transient int count;
private int threshold; // 扩容阈值
private float loadFactor;// 扩容因子
private static class Entry<K,V> implements Map.Entry<K,V> {
final int hash;
final K key;
V value;
Entry<K,V> next; // next结点,单向链表
protected Entry(int hash, K key, V value, Entry<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}
}
// 构造方法
public Hashtable(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal Capacity: " + initialCapacity);
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal Load: "+loadFactor);
if (initialCapacity==0)
initialCapacity = 1;
this.loadFactor = loadFactor;
table = new Entry<?,?>[initialCapacity];
threshold = (int)Math.min(initialCapacity * loadFactor, MAX_ARRAY_SIZE + 1);
}
public Hashtable(int initialCapacity) {
this(initialCapacity, 0.75f);
}
// 默认构造方法 数组长度11,扩容因子0.75
public Hashtable() {
this(11, 0.75f);
}
public Hashtable(Map<? extends K, ? extends V> t) {
this(Math.max(2*t.size(), 11), 0.75f);
putAll(t);
}
}
put方法
使用synchronized同步锁,保证线程安全
public synchronized V put(K key, V value) {
if (value == null) { // 不能插入null
throw new NullPointerException();
}
Entry<?,?> tab[] = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;// 通过取模找到hash下标
Entry<K,V> entry = (Entry<K,V>)tab[index];
for(; entry != null ; entry = entry.next) { // 遍历链表
if ((entry.hash == hash) && entry.key.equals(key)) {
V old = entry.value;
entry.value = value; // value重新赋值
return old;
}
}
addEntry(hash, key, value, index);
return null;
}
// 添加元素
private void addEntry(int hash, K key, V value, int index) {
modCount++;
Entry<?,?> tab[] = table;
if (count >= threshold) {
rehash(); // 扩容并重新hash
tab = table;
hash = key.hashCode();
index = (hash & 0x7FFFFFFF) % tab.length;
}
// Creates the new entry.
@SuppressWarnings("unchecked")
Entry<K,V> e = (Entry<K,V>) tab[index];
// 把就结点e 作为新结点 的next结点新建一个Entry结点;相当于把新结点插入到链表的最前端
tab[index] = new Entry<>(hash, key, value, e);
count++;
}
hash算法
// 取hash
int hash = key.hashCode();
// 通过取模计算当前key在数组中的下标index
int index = (hash & 0x7FFFFFFF) % tab.length;
扩容
protected void rehash() {
int oldCapacity = table.length;
Entry<?,?>[] oldMap = table;
// 旧容量翻倍+1
int newCapacity = (oldCapacity << 1) + 1;
if (newCapacity - MAX_ARRAY_SIZE > 0) {
if (oldCapacity == MAX_ARRAY_SIZE)
// Keep running with MAX_ARRAY_SIZE buckets
return;
newCapacity = MAX_ARRAY_SIZE;
}
Entry<?,?>[] newMap = new Entry<?,?>[newCapacity];
modCount++;
threshold = (int)Math.min(newCapacity * loadFactor, MAX_ARRAY_SIZE + 1);
table = newMap;
// 遍历所有元素,重新hash放入数组
for (int i = oldCapacity ; i-- > 0 ;) {
for (Entry<K,V> old = (Entry<K,V>)oldMap[i] ; old != null ; ) {
Entry<K,V> e = old;
old = old.next;
int index = (e.hash & 0x7FFFFFFF) % newCapacity; // 重新计算下标
e.next = (Entry<K,V>)newMap[index];
newMap[index] = e;
}
}
}
get方法
使用synchronized同步锁,保证线程安全
public synchronized V get(Object key) {
Entry<?,?> tab[] = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length; // 计算下标
for (Entry<?,?> e = tab[index] ; e != null ; e = e.next) {
if ((e.hash == hash) && e.key.equals(key)) {
return (V)e.value;
}
}
return null;
}
remove方法
使用synchronized同步锁,保证线程安全
public synchronized V remove(Object key) {
Entry<?,?> tab[] = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
@SuppressWarnings("unchecked")
Entry<K,V> e = (Entry<K,V>)tab[index];
for(Entry<K,V> prev = null ; e != null ; prev = e, e = e.next) {
if ((e.hash == hash) && e.key.equals(key)) {
modCount++;
if (prev != null) { // 删除链表结点
prev.next = e.next;
} else {
tab[index] = e.next;
}
count--;
V oldValue = e.value;
e.value = null;
return oldValue;
}
}
return null;
}
HashMap和Hashtable
Hashtable和HashMap都是key-value的映射集合
- 数据结构:Hashtable与 HashMap都采用数组+链表的结构存储数据,HashMap在链表长度超过8时会将链表转换为红黑树,提高查询效率
- 线程安全:Hashtable的方法都有synchronized修饰,所以Hashtable线程安全的,HashMap是非线程安全的
- 性能:由于Hashtable有synchronized修饰,HashMap 性能较好
- Hashtable 是不允许key或value为 null 的,HashMap 的key和value则都可以为 null
- Hashtable的默认容量是11,HashMap的默认容量是16,扩容因子都是0.75,Hashtable扩容后的容量2n+1,HashMap是2n;
- Hashtable的hash算法是求余法,HashMap是与运算(容量必须是2的整数次幂)
TreeMap
TreeMap实际是一棵红黑树
public class TreeMap<K,V> extends AbstractMap<K,V>
implements NavigableMap<K,V>, Cloneable, java.io.Serializable {
private transient Entry<K,V> root; // 根结点
private transient int size = 0; // 集合大小
// 红黑树结点
static final class Entry<K,V> implements Map.Entry<K,V> {
K key;
V value;
Entry<K,V> left; // 左子结点
Entry<K,V> right; // 右子结点
Entry<K,V> parent; // 父结点
boolean color = BLACK; // 红色还是黑树
Entry(K key, V value, Entry<K,V> parent) {
this.key = key;
this.value = value;
this.parent = parent;
}
}
// 构造方法
public TreeMap() {
comparator = null;
}
public TreeMap(Comparator<? super K> comparator) {
this.comparator = comparator;
}
public TreeMap(Map<? extends K, ? extends V> m) {
comparator = null;
putAll(m);
}
public TreeMap(SortedMap<K, ? extends V> m) {
comparator = m.comparator();
try {
buildFromSorted(m.size(), m.entrySet().iterator(), null, null);
} catch (java.io.IOException cannotHappen) {
} catch (ClassNotFoundException cannotHappen) {
}
}
}
put方法
使用synchronized同步锁,保证线程安全
public V put(K key, V value) {
Entry<K,V> t = root;
if (t == null) { // 如果root结点为null
compare(key, key);
root = new Entry<>(key, value, null); // 设置当前插入的结点为root
size = 1;
modCount++;
return null;
}
int cmp;
Entry<K,V> parent;
Comparator<? super K> cpr = comparator;
if (cpr != null) { // Comparator 参数不为空
do {
parent = t;
cmp = cpr.compare(key, t.key);
if (cmp < 0) // 小于0,左子结点
t = t.left;
else if (cmp > 0) // 大于0,右子结点
t = t.right;
else // 等于0,说明当前结点key和put的key一样
return t.setValue(value);
} while (t != null);
} else {
if (key == null)
throw new NullPointerException();
Comparable<? super K> k = (Comparable<? super K>) key;
do {
parent = t;
cmp = k.compareTo(t.key);
if (cmp < 0)
t = t.left;
else if (cmp > 0)
t = t.right;
else
return t.setValue(value);
} while (t != null);
}
Entry<K,V> e = new Entry<>(key, value, parent);
if (cmp < 0)
parent.left = e;
else
parent.right = e;
fixAfterInsertion(e); // 修正红黑树
size++;
modCount++;
return null;
}
get方法
public V get(Object key) {
Entry<K,V> p = getEntry(key);
return (p==null ? null : p.value);
}
final Entry<K,V> getEntry(Object key) {
if (comparator != null)
return getEntryUsingComparator(key);
if (key == null)
throw new NullPointerException();
@SuppressWarnings("unchecked")
Comparable<? super K> k = (Comparable<? super K>) key;
Entry<K,V> p = root;
// 二叉查找树的查找方法
while (p != null) {
int cmp = k.compareTo(p.key);
if (cmp < 0) // <0,向左查询
p = p.left;
else if (cmp > 0)// >0,向右查询
p = p.right;
else
return p;
}
return null;
}
remove方法
public V remove(Object key) {
Entry<K,V> p = getEntry(key); // 找到结点
if (p == null)
return null;
V oldValue = p.value;
deleteEntry(p);
return oldValue;
}
private void deleteEntry(Entry<K,V> p) {
modCount++;
size--;
// If strictly internal, copy successor's element to p and then make p
// point to successor.
if (p.left != null && p.right != null) {
Entry<K,V> s = successor(p);
p.key = s.key;
p.value = s.value;
p = s;
} // p has 2 children
// Start fixup at replacement node, if it exists.
Entry<K,V> replacement = (p.left != null ? p.left : p.right);
if (replacement != null) {
// Link replacement to parent
replacement.parent = p.parent;
if (p.parent == null)
root = replacement;
else if (p == p.parent.left)
p.parent.left = replacement;
else
p.parent.right = replacement;
// Null out links so they are OK to use by fixAfterDeletion.
p.left = p.right = p.parent = null;
// Fix replacement
if (p.color == BLACK)
fixAfterDeletion(replacement);
} else if (p.parent == null) { // return if we are the only node.
root = null;
} else { // No children. Use self as phantom replacement and unlink.
if (p.color == BLACK)
fixAfterDeletion(p);
if (p.parent != null) {
if (p == p.parent.left)
p.parent.left = null;
else if (p == p.parent.right)
p.parent.right = null;
p.parent = null;
}
}
}