数据分析是基于商业目的,有目的的进行收集、整理、加工和分析数据,提炼有价信息的一个过程。其过程概括起来主要包括:明确分析目的与框架、数据收集、数据处理、数据分析、数据展现和撰写报告等6个阶段。
1、明确分析目的与框架
一个分析项目,你的数据对象是谁?商业目的是什么?要解决什么业务问题?数据分析师对这些都要了然于心。基于商业的理解,整理分析框架和分析思路。例如,减少新客户的流失、优化活动效果、提高客户响应率等等。不同的项目对数据的要求,使用的分析手段也是不一样的。
2、数据收集
数据收集是按照确定的数据分析和框架内容,有目的的收集、整合相关数据的一个过程,它是数据分析的一个基础。
3、数据处理
数据处理是指对收集到的数据进行加工、整理,以便开展数据分析,它是数据分析前必不可少的阶段。这个过程是数据分析整个过程中最占据时间的,也在一定程度上取决于数据仓库的搭建和数据质量的保证。
数据处理主要包括数据清洗、数据转化等处理方法。
4、数据分析
数据分析是指通过分析手段、方法和技巧对准备好的数据进行探索、分析,从中发现因果关系、内部联系和业务规律,为商业目提供决策参考。
1. 事件分析
事件:通过埋点,高效追踪用户行为或业务的过程。注册、启动、登录、点击等,都是常见的事件。例如下图,通过“神策分析”展示出某日的注册事件。
通过神策分析昨日的注册数据

通过事件分析我们可以准确了解App内发生的事件量,根据产品特性合理配置追踪,可以轻松回答关于变化趋势、分维度对比等问题,例如:
- 某个时间段推广页面点击量有多少,对比昨日有多少提升?
- 某个渠道的累计注册数是多少,第一季度排名前十的注册渠道有哪些?
- 某个活动页的UV(Unique Visitor,独立访客)分时走势,安卓和iOS占比情况如何?
2. 漏斗分析
漏斗模型:分析一个多步骤过程中,每一步的转化与流失情况。以互联网金融-理财端为例,新用户在首次投资会经过如下步骤过程:
- 浏览页面
- 实名认证
- 充值成功
- 投资成功 我们可以通过漏斗分析整体的转化情况,以及每一步转化量、流失量、转化/流失率。
在漏斗模型中清晰3个基本概念,可以借助强大的筛选和分组功能进行深度分析。
-
步骤:指的用户行为,由事件加筛选条件组成
-
时间范围:漏斗第一步骤发生的时间范围
-
窗口期:用户完成漏斗的时间限制,漏斗只统计这个时间范围内,用户从第一步到最后一步的转化。
如上图表示:“2018年3月份,浏览标的页面的28100名用户,在7天内投资成功的转化与流失情况”。这里漏斗分析与事件分析不同的地方:漏斗分析基于用户,或是说基于人来统计某一批用户所发生的行为,不会受到历史浏览页面用户的事件影响,更加准确的暴露某一时间段产品存在的问题。
通过漏斗模型及时发现问题
我们通过建立了注册转化漏斗,度量每一步的转化率和整体的注册转化率,通过时间维度来监控每一步和整体转化率的趋势。
例如:6月17日发现输入图形验证码这一步转化率在有明显异常,于是紧急通知技术同事排查,发现图形验证码功能失效,导致大量用户无法显示。紧急修复后,转化率回到之前的水平。所以,通过对每一步漏斗转化率的监控分析,可以及时发现问题,及时止损。
3. 留存分析
留存用户:即用户发生初始行为一段时间后,发生了目标行为,即认定该用户为留存用户。
留存行为:某个目标用户完成了起始行为之后,在后续日期完成了特定留存行为,则留存人数 +1
留存率:是指发生“留存行为用户”占发生“初始行为用户”的比例。常见指标有次日留存率、七日留存率、次月留存率等。
留存表:留存表中给出了目标用户的留存详情,主要包括以下几个信息:
1. 目标用户:每天完成起始行为的目标用户量,是留存用户的基数
2. 留存用户:发生留存行为的留存用户量和留存率;

留存曲线图:
留存曲线图可以观测随着时间推移,用户留存率的衰减情况。
以电商为例,我们观察运营策略优化/产品改版,是否会影响用户的购买行为。此时我们可以将用户行为分为:
- 初始行为:注册
- 留存行为:支付订单
然后根据客户注册的时间按周进行分组,得到同期群,制作留存曲线图,观察该群体用户发生购买的 30日留存。通过比较不同的同期群,可以获知新用户购买率指标是否在提升。

留存行为一般都与我们的目标有强相关性。我们在进行留存分析时,一定要根据自身业务的实际需要,确定高价值的留存行为才能能对产品的优化提供指导性建议。
5、数据展现
一般情况下,数据分析的结果都是通过图、表的方式来呈现,俗话说:字不如表,表不如图。借助数据展现手段,能更直观的让数据分析师表述想要呈现的信息、观点和建议。
常用的图表包括饼图、折线图、柱形图/条形图、散点图、雷达图等、金字塔图、矩阵图、漏斗图、帕雷托图等。
6、撰写报告
最后阶段,就是撰写数据分析报告,这是对整个数据分析成果的一个呈现。通过分析报告,把数据分析的目的、过程、结果及方案完整呈现出来,以供商业目的提供参考。
总结
说了那么多,希望大家不要被网上那么多的概念所迷惑,产品经理不能为了数据分析而分析,而要将落脚点放到产品和用户上。数据分析应该帮助产品经理不断优化产品设计和迭代,驱动产品和用户增长,做好成本把控,风险预测才是本质目的。
工作中处处留心,可以避免走入很多的误区。产品经理每一个决策几乎都要牵涉到很多方面。磨刀不误砍柴工,多想想再去做,说不定效果更好。