理解同步、异步;阻塞、非阻塞
同步/异步关注的是消息的通信机制
所谓同步,就是在发出一个调用时,在没有得到结果之前,该调用就不返回。但是一旦调用返回,就得到返回值了。换句话说,就是由调用者主动等待这个调用的结果。
而异步则是相反,调用在发出之后,这个调用就直接返回了,所以没有返回结果。换句话说,当一个异步过程调用发出后,调用者不会立刻得到结果。而是在调用发出后,被调用者通过状态、通知来通知调用者,或通过回调函数处理这个调用。
举个通俗的例子:你打电话问书店老板有没有《分布式系统》这本书,如果是同步通信机制,书店老板会说,你稍等,”我查一下",然后开始查啊查,等查好了(可能是5秒,也可能是一天)告诉你结果(返回结果)。而异步通信机制,书店老板直接告诉你我查一下啊,查好了打电话给你,然后直接挂电话了(不返回结果)。然后查好了,他会主动打电话给你。在这里老板通过“回电”这种方式来回调。
程序在等待调用结果(消息,返回值)时的状态
阻塞调用是指调用结果返回之前,当前线程会被挂起。调用线程只有在得到结果之后才会返回。
非阻塞调用指在不能立刻得到结果之前,该调用不会阻塞当前线程。
还是上面的例子,你打电话问书店老板有没有《分布式系统》这本书,你如果是阻塞式调用,你会一直把自己“挂起”,直到得到这本书有没有的结果,如果是非阻塞式调用,你不管老板有没有告诉你,你自己先一边去玩了, 当然你也要偶尔过几分钟check一下老板有没有返回结果。在这里阻塞与非阻塞与是否同步异步无关。跟老板通过什么方式回答你结果无关。
unix IO模型
一次IO输入操作通常包含两个阶段:
1)等待数据准备好
2)从内核向进程拷贝数据
对套接字的IO操作来说,第一步通常涉及等待数据从网络中到达。当所等待分组到达时,它被复制到内核中某个缓冲区。第二部就是把数据从内核缓冲区复制到应用进程缓冲区。
阻塞式IO
函数调用期间,一直被阻塞,直到数据准备好且从内核复制到用户程序才返回,这种IO模型为阻塞式IO 阻塞式IO式最流行的IO模型
非阻塞式IO
函数调用时,如果数据没有准备好,不像阻塞式IO那样一直被阻塞,而是返回一个错误码。数据准备好时,函数成功返回。
此时调用方往往通过不断轮训去
IO多路复用
类似与非阻塞,只不过轮询不是由用户线程去执行,而是由内核去轮询,内核监听程序监听到数据准备好后,调用内核函数复制数据到用户态 下图中select这个系统调用,充当代理类的角色,不断轮询注册到它这里的所有需要IO的文件描述符,有结果时,把结果告诉被代理的recvfrom函数,它本尊再亲自出马去拿数据 IO多路复用至少有两次系统调用,如果只有一个代理对象,性能上是不如前面的IO模型的,但是由于它可以同时监听很多套接字,所以性能比前两者高
多路复用包括:
select:线性扫描所有监听的文件描述符,不管他们是不是活跃的。有最大数量限制(32位系统1024,64位系统2048)
poll:同select,不过数据结构不同,需要分配一个pollfd结构数组,维护在内核中。它没有大小限制,不过需要很多复制操作
epoll:用于代替poll和select,没有大小限制。使用一个文件描述符管理多个文件描述符,使用红黑树存储。同时用事件驱动代替了轮询。epoll_ctl中注册的文件描述符在事件触发的时候会通过回调机制激活该文件描述符。epoll_wait便会收到通知。最后,epoll还采用了mmap虚拟内存映射技术减少用户态和内核态数据传输的开销
信号驱动式IO
使用信号,内核在数据准备就绪时通过信号来进行通知 首先开启信号驱动io套接字,并使用sigaction系统调用来安装信号处理程序,内核直接返回,不会阻塞用户态 数据准备好时,内核会发送SIGIO信号,收到信号后开始进行io操作
异步IO
异步IO依赖信号处理程序来进行通知 不过异步IO与前面IO模型不同的是:前面的都是数据准备阶段的阻塞与非阻塞,异步IO模型通知的是IO操作已经完成,而不是数据准备完成 异步IO才是真正的非阻塞,主进程只负责做自己的事情,等IO操作完成(数据成功从内核缓存区复制到应用程序缓冲区)时通过回调函数对数据进行处理 unix中异步io函数以aio_或lio_打头
区别
前面四种IO模型的主要区别在第一阶段,他们第二阶段是一样的:数据从内核缓冲区复制到调用者缓冲区期间都被阻塞住! 前面四种IO都是同步IO:IO操作导致请求进程阻塞,直到IO操作完成 异步IO:IO操作不导致请求进程阻塞