PyTorch中的损失函数--L1Loss /L2Loss/SmoothL1Loss

6,800 阅读2分钟

L1Loss

也就是L1 Loss了,它有几个别称:

  1. L1 范数损失
  2. 最小绝对值偏差(LAD)
  3. 最小绝对值误差(LAE)

最常看到的MAE也是指L1 Loss损失函数。 它是把目标值y_i与模型输出(估计值)f(x_i)做绝对值得到的误差

? loss(x,y)= \frac{1}{n} \sum_{i=1}^n|y_i-f(x_i)| ?

什么时候用?

  1. 回归任务
  2. 简单的模型
  3. 由于神经网络通常是解决复杂问题,所以很少使用。

L2Loss

也就是L2 Loss了,它有几个别称:

  1. L2 范数损失
  2. 最小均方值偏差(LSD)
  3. 最小均方值误差(LSE)

最常看到的MSE也是指L2 Loss损失函数,PyTorch中也将其命名为torch.nn.MSELoss

它是把目标值y_i与模型输出(估计值)f(x_i)做差然后平方得到的误差

$loss(x,y)=\frac{1}{n} \sum_{i=1 }^n (y_i-f(x_i))^2$

什么时候使用?

  1. 回归任务
  2. 数值特征不大
  3. 问题维度不高

SmoothL1Loss

简单来说就是平滑版的L1 Loss。

原理

SoothL1Loss的函数如下:

? loss(x, y) = \frac{1}{n} \sum_{i=1}^n \left\{ \begin{array}\\ 0.5*(y_i-f(x_i))^2, & if~| y_i-f(x_i)| < 1\\ | y_i-f(x_i)| - 0.5, & otherwise \end{array} \right. ?

仔细观察可以看到,当预测值和ground truth差别较小的时候(绝对值差小于1),其实使用的是L2 Loss;而当差别大的时候,是L1 Loss的平移。

SooothL1Loss其实是L2Loss和L1Loss的结合,它同时拥有L2 Loss和L1 Loss的部分优点。

  1. 当预测值和ground truth差别较小的时候(绝对值差小于1),梯度不至于太大。(损失函数相较L1 Loss比较圆滑)
  2. 当差别大的时候,梯度值足够小(较稳定,不容易梯度爆炸)。

什么时候使用?

  1. 回归
  2. 当特征中有较大的数值
  3. 适合大多数问题

size_average=True or False

在pytorch中,所有的损失函数都带这个参数,默认设置为True。

当size_average为True的时候,计算出来的结果会对mini-batch取平均。反之,为False的时候,那算出来的绝对值不会除以n。