数据结构
-
B Tree 指的是 Balance Tree,也就是平衡树。平衡树是一颗查找树,并且所有叶子节点位于同一层。
-
B+ Tree 是基于 B Tree 和叶子节点顺序访问指针进行实现,它具有 B Tree 的平衡性,并且通过顺序访问指针来提高区间查询的性能。
在 B+ Tree 中,一个节点中的 key 从左到右非递减排列,如果某个指针的左右相邻 key 分别是 keyi 和 keyi+1,且不为 null,则该指针指向节点的所有 key 大于等于 keyi 且小于等于 keyi+1。
1. B+Tree 索引
是大多数 MySQL 存储引擎的默认索引类型。
因为不再需要进行全表扫描,只需要对树进行搜索即可,所以查找速度快很多。
2. 哈希索引
哈希索引能以 O(1) 时间进行查找,但是失去了有序性:
- 无法用于排序与分组;
- 只支持精确查找,无法用于部分查找和范围查找。
3. 全文索引
-
MyISAM 存储引擎支持全文索引,用于查找文本中的关键词,而不是直接比较是否相等。
-
查找条件使用 MATCH AGAINST,而不是普通的 WHERE。
-
全文索引使用倒排索引实现,它记录着关键词到其所在文档的映射。
-
InnoDB 存储引擎在 MySQL 5.6.4 版本中也开始支持全文索引。
4.索引的优点
-
大大减少了服务器需要扫描的数据行数。
-
帮助服务器避免进行排序和分组,以及避免创建临时表(B+Tree 索引是有序的,可以用于 ORDER BY 和 GROUP BY 操作。临时表主要是在排序和分组过程中创建,不需要排序和分组,也就不需要创建临时表)。
-
将随机 I/O 变为顺序 I/O(B+Tree 索引是有序的,会将相邻的数据都存储在一起)。
5.索引的使用条件
-
对于非常小的表、大部分情况下简单的全表扫描比建立索引更高效;
-
对于中到大型的表,索引就非常有效;
-
但是对于特大型的表,建立和维护索引的代价将会随之增长。这种情况下,需要用到一种技术可以直接区分出需要查询的一组数据,而不是一条记录一条记录地匹配,例如可以使用分区技术。
6.查询性能的优化
Explain 用来分析 SELECT 查询语句,开发人员可以通过分析 Explain 结果来优化查询语句。
比较重要的字段有:
- select_type : 查询类型,有简单查询、联合查询、子查询等
- key : 使用的索引
- rows : 扫描的行数