1.概述
所有的分布式系统都需要考虑一致性问题,ES采用的是主从模式的一致性解决方案。本文将主要基于Elasticsearch 6.5.4版本的discovery模块从:ES节点类型、启动流程、Master选举、节点监测等方面介绍ES的主从模式的一致性解决方案。Elasticsearch6.5.4 debug环境搭建可以参考:
2.ES节点类型
一个Elasticsearch集群是由许多Node组成的,Node可以在Elasticsearch的启动脚本elasticsearch.yml进行设置。
node.master: true/false
node.data: true/false
根据配置,ES Node类型一共有四种:MasterNode+DataNode、MasterNode、DataNode和最后一种Coordinating节点。
MasterNode:是能够成为master的候选节点,可以参与选选举,主要是存储集群的元数据。
DataNode:主要存储shard的数据,并且负责这些shard数据的读写。
Coordinating Node:节点既不作为master也不存储数据,接受请求转发,聚合等操作。
3.启动流程
ZenDiscovery.java是Elasticsearch discovery的默认实现,选举相关的逻辑基本在该类中。启动的时候,ZenDiscovery类由Node.java,初始化,调用ZenDiscovery#startInitialJoin()方法启动。
4.Master选举
4.1 脑裂问题
为了集群不出现脑裂问题,一般会在启动的时候配置quorum策略。
discovery.zen.minimum_master_nodes: (master_num/2)+1
master_num为集群中master候选节点的个数。该配置表示:当投票的人超过半数,节点才能被选举为master。
如下图所示的集群,如果出现了网络分区。Node1和Node2突然掉除了集群,此时Node1和Node2会发起选举,假设选举除了Node1成为master,右边也发起了一轮选举,选出了Node3作为master。这样集群被分为两部分,每一部分都会维护自己的集群状态。如果配置了quorum策略,则左边小于3,无法进行选主,那左边的集群暂时无法工作,右边集群可以正常提供服务。
4.2 何时发起选举
- 集群启动的时候
集群启动的时候,通过 joinThreadControl#startNewThreadIfNotRunning() 来选出Master节点。
- 检测到和原来master的连接断开
通过ZenDiscovery#handleMasterGone来处理,最终调用 joinThreadControl#startNewThreadIfNotRunning()重新发起选举
我们看到startNewThreadIfNotRunning会启动一个线程去执行innerJoinCluster(),innerJoinCluster()中有一个while()循环,会一直等待findMaster()方法找到master节点。
- 监测到node节点断开
每次断开节点后会检查当前集群节点数是否满足quorum配置,如果不满足,重新发起选举。
4.3 候选节点
我们看到findMaster的第一步,调用pingAndWait()获取集群中的节点。集群的节点可以在
elasticsearch.yml中配置:
discovery.zen.ping.unicast.hosts: [1.1.1.1, 1.1.1.2, 1.1.1.3]
private DiscoveryNode findMaster() {
logger.trace("starting to ping");
//查找当前活跃的master
List<ZenPing.PingResponse> fullPingResponses = pingAndWait(pingTimeout).toList();
if (fullPingResponses == null) {
logger.trace("No full ping responses");
return null;
}
if (logger.isTraceEnabled()) {
StringBuilder sb = new StringBuilder();
if (fullPingResponses.size() == 0) {
sb.append(" {none}");
} else {
for (ZenPing.PingResponse pingResponse : fullPingResponses) {
sb.append("\n\t--> ").append(pingResponse);
}
}
logger.trace("full ping responses:{}", sb);
}
final DiscoveryNode localNode = transportService.getLocalNode();
// add our selves
assert fullPingResponses.stream().map(ZenPing.PingResponse::node)
.filter(n -> n.equals(localNode)).findAny().isPresent() == false;
//加入当前节点
fullPingResponses.add(new ZenPing.PingResponse(localNode, null, this.clusterState()));
// filter responses
final List<ZenPing.PingResponse> pingResponses = filterPingResponses(fullPingResponses, masterElectionIgnoreNonMasters, logger);
List<DiscoveryNode> activeMasters = new ArrayList<>();
//收集ping到的节点的master信息,这里先不考虑自己,Discovery的策略是非直到最后一刻都不会选自己为master,可能预防脑裂在一开始就发生吧。
for (ZenPing.PingResponse pingResponse : pingResponses) {
// We can't include the local node in pingMasters list, otherwise we may up electing ourselves without
// any check / verifications from other nodes in ZenDiscover#innerJoinCluster()
if (pingResponse.master() != null && !localNode.equals(pingResponse.master())) {
activeMasters.add(pingResponse.master());
}
}
// nodes discovered during pinging master 候选者=> 能够ping到的所有master设置为true的节点
List<ElectMasterService.MasterCandidate> masterCandidates = new ArrayList<>();
for (ZenPing.PingResponse pingResponse : pingResponses) {
if (pingResponse.node().isMasterNode()) {
masterCandidates.add(new ElectMasterService.MasterCandidate(pingResponse.node(), pingResponse.getClusterStateVersion()));
}
}
//如果收集到的节点没有master信息,怎开始选举
if (activeMasters.isEmpty()) {
//master 为空,表明节点刚启动,进行选主
if (electMaster.hasEnoughCandidates(masterCandidates)) {
//选主
final ElectMasterService.MasterCandidate winner = electMaster.electMaster(masterCandidates);
logger.trace("candidate {} won election", winner);
return winner.getNode();
} else {
//如果没有足够多候选节点,选主失败
// if we don't have enough master nodes, we bail, because there are not enough master to elect from
logger.warn("not enough master nodes discovered during pinging (found [{}], but needed [{}]), pinging again",
masterCandidates, electMaster.minimumMasterNodes());
return null;
}
} else {
//master列表不为空,选择一个nodeid最小的作为master
assert !activeMasters.contains(localNode) : "local node should never be elected as master when other nodes indicate an active master";
// lets tie break between discovered nodes
return electMaster.tieBreakActiveMasters(activeMasters);
}
}
得到的fullPingResponses表示,现在集群中的所有节点信息,包括这些节点当前的master信息(有可能为空)。
接下来如下图所示对fullPingResponse进行过滤,如果配置了ignore_non_master_pings为true,则要把那些node.master配置为false的过滤掉,然后判断过滤后的结果是否为当前节点,如果是当前节点,也过滤掉(ZenDiscovery一般最后才考虑当前节点,可能是为了防止脑裂)。最后拿到一个activeMasters的名单,该名单表示目前集群中存活的master节点,一般个数为0或者1。
4.4 选主
有了activeMasters,还要做一件事情,就是拿到集群中所有配置了node.master为true的节点,从刚才的fullPingResponses可以很容易的找到配置为node.master为true的节点,最后生成一个masterCandidates。有了这两个列表之后,就可以正在的选主工作了。
- 如上图所示:先判断activeMasters是否为空,如果activeMasters不为空,则从activeMasters中选出nodeId最小的节点作为master(正常健康的集群只会有一个,如果出现了脑裂,则会存在多个)。如果activeMasters为空,则判断当前集群是否达到选举个数要求,如果达到,则从masterCandidates中选举一个版本号最新的节点,如果版本号一致选择nodeId小的那个。如果集群没有达到规定个数,选举失败。
4.5 确定选主
当前节点选出master后,并不能确定这个master就能成为整个集群的master,这只是当前节点认为的master。这时还需要判断master的情况:
//如果master选出来是自己
if (transportService.getLocalNode().equals(masterNode)) {
//需要等待discovery.zen.minimum_master_nodes-1个节点加入才算成功
final int requiredJoins = Math.max(0, electMaster.minimumMasterNodes() - 1); // we count as one
logger.debug("elected as master, waiting for incoming joins ([{}] needed)", requiredJoins);
nodeJoinController.waitToBeElectedAsMaster(requiredJoins, masterElectionWaitForJoinsTimeout,
new NodeJoinController.ElectionCallback() {
//选举自己成功
@Override
public void onElectedAsMaster(ClusterState state) {
synchronized (stateMutex) {
joinThreadControl.markThreadAsDone(currentThread);
}
}
//选举自己失败,重新发起一轮ping
@Override
public void onFailure(Throwable t) {
logger.trace("failed while waiting for nodes to join, rejoining", t);
synchronized (stateMutex) {
joinThreadControl.markThreadAsDoneAndStartNew(currentThread);
}
}
}
);
} else {
// process any incoming joins (they will fail because we are not the master)
//阻止其他节点加入,localNode
nodeJoinController.stopElectionContext(masterNode + " elected");
// send join request
final boolean success = joinElectedMaster(masterNode);
synchronized (stateMutex) {
if (success) {
DiscoveryNode currentMasterNode = this.clusterState().getNodes().getMasterNode();
if (currentMasterNode == null) {
// Post 1.3.0, the master should publish a new cluster state before acking our join request. we now should have
// a valid master.
logger.debug("no master node is set, despite of join request completing. retrying pings.");
joinThreadControl.markThreadAsDoneAndStartNew(currentThread);
} else if (currentMasterNode.equals(masterNode) == false) {
// update cluster state
joinThreadControl.stopRunningThreadAndRejoin("master_switched_while_finalizing_join");
}
joinThreadControl.markThreadAsDone(currentThread);
} else {
// failed to join. Try again...
joinThreadControl.markThreadAsDoneAndStartNew(currentThread);
}
}
}
1)如果选出来的master为当前节点,则当前节点需要等待其他节点的加入,等待的数目为discovery.zen.minimum_master_nodes-1,加上当前节点maste,刚好投票大于半数。如果在一定时间内没有收到足够多的投票(即其他节点的加入),则选举失败,重新开始选举。如果加入的节点达到数目,则选举成功。
2)如果当前选举的master是其他节点,则当前节点关闭其他节点的加入请求,假设当前节为node1,目标master节点为node2。则此时有三种可能:
- node2已经是集群master,怎把node1作为一个新节点加入,同步集群信息,node1选举成功
- node2正在参与选举,即1)所描述的状态,则node2会把这次连接当成一个投票,node1继续等待,如果node1在规定时间内没有等到node2成为master,则node1选举失败,node1重新选举
- node2认为node3才是master,此时node3会拒接连接请求,node1选举失败,重新选举。
5.节点监测
选举流程结束后,为了保证集群服务过程中节点的意外退出,需要启动两个重要的task。分别是masterFaultDetection和NodeFaultDetection。类似于心跳机制,定期监测node和master的状态。如果node监测不到master心跳,调用,会notifyMasterFailure进行选举。如果master检测不到NodeFaultDetection心跳,调用notifyNodeFailure,将node移除,发布新的cluster_state,执行相应的primary和replica操作。移除node的时候会监测当前节点数据是否足够,如果不足,则重新发起选举。
if (electMasterService.hasEnoughMasterNodes(remainingNodesClusterState.nodes()) == false) {
final int masterNodes = electMasterService.countMasterNodes(remainingNodesClusterState.nodes());
rejoin.accept(LoggerMessageFormat.format("not enough master nodes (has [{}], but needed [{}])",
masterNodes, electMasterService.minimumMasterNodes()));
return resultBuilder.build(currentState);
} else {
return resultBuilder.build(allocationService.deassociateDeadNodes(remainingNodesClusterState, true, describeTasks(tasks)));
}
6.总结
相较于zookeeper的选举,es的选举有点像Bully算法,比较简单。zookeeper基于Paxos的算法则比较复杂。Es的discovery模块代码量不大,核心的ZenDiscovery.java一共才1000多行代码,认真看几遍就能明白Elasticsearch选举的主要思想。
更多精彩内容,请关注公众号