ES-学习笔记

1,606 阅读6分钟

1.快速入门

1. Elasticsearch的功能

1.分布式的搜索引擎和数据分析引擎

搜索:百度,网站的站内搜索,IT系统的检索 数据分析:电商网站,最近7天牙膏这种商品销量排名前10的商家有哪些;新闻网站,最近1个月访问量排名前3的新闻版块是哪些 分布式,搜索,数据分析

2.全文检索,结构化检索,数据分析

全文检索:我想搜索商品名称包含牙膏的商品,select * from products where product_name like "%牙膏%" 结构化检索:我想搜索商品分类为日化用品的商品都有哪些,select * from products where category_id='日化用品' 部分匹配、自动完成、搜索纠错、搜索推荐 数据分析:我们分析每一个商品分类下有多少个商品,select category_id,count(*) from products group by category_id

3.对海量数据进行近实时的处理

分布式:ES自动可以将海量数据分散到多台服务器上去存储和检索 海联数据的处理:分布式以后,就可以采用大量的服务器去存储和检索数据,自然而然就可以实现海量数据的处理了 近实时:检索个数据要花费1小时(这就不要近实时,离线批处理,batch-processing);在秒级别对数据进行搜索和分析

跟分布式/海量数据相反的:lucene,单机应用,只能在单台服务器上使用,最多只能处理单台服务器可以处理的数据量

2.elasticsearch的核心概念

1.Near Realtime(NRT)

近实时,两个意思,从写入数据到数据可以被搜索到有一个小延迟(大概1秒);基于es执行搜索和分析可以达到秒级

2. Cluster

集群,包含多个节点,每个节点属于哪个集群是通过一个配置(集群名称,默认是elasticsearch)来决定的,对于中小型应用来说,刚开始一个集群就一个节点很正常

3.Node

节点,集群中的一个节点,节点也有一个名称(默认是随机分配的),节点名称很重要(在执行运维管理操作的时候),默认节点会去加入一个名称为“elasticsearch”的集群,如果直接启动一堆节点,那么它们会自动组成一个elasticsearch集群,当然一个节点也可以组成一个elasticsearch集群

4.Document

文档,es中的最小数据单元,一个document可以是一条客户数据,一条商品分类数据,一条订单数据,通常用JSON数据结构表示,每个index下的type中,都可以去存储多个document

5.field

一个document里面有多个field,每个field就是一个数据字段

{//document
  "product_id": "1",//field
  "product_name": "高露洁牙膏",
  "product_desc": "高效美白",
  "category_id": "2",
  "category_name": "日化用品"
}

6.Index

索引,包含一堆有相似结构的文档数据,比如可以有一个客户索引,商品分类索引,订单索引,索引有一个名称。一个index包含很多document,一个index就代表了一类类似的或者相同的document。比如说建立一个product index,商品索引,里面可能就存放了所有的商品数据,所有的商品document。

7.Type

类型,每个索引里都可以有一个或多个type,type是index中的一个逻辑数据分类,一个type下的document,都有相同的field,比如博客系统,有一个索引,可以定义用户数据type,博客数据type,评论数据type。

商品index,里面存放了所有的商品数据,商品document

但是商品分很多种类,每个种类的document的field可能不太一样,比如说电器商品,可能还包含一些诸如售后时间范围这样的特殊field;生鲜商品,还包含一些诸如生鲜保质期之类的特殊field

type,日化商品type,电器商品type,生鲜商品type

日化商品type:product_id,product_name,product_desc,category_id,category_name 电器商品type:product_id,product_name,product_desc,category_id,category_name,service_period 生鲜商品type:product_id,product_name,product_desc,category_id,category_name,eat_period

每一个type里面,都会包含一堆document

{
  "product_id": "2",
  "product_name": "长虹电视机",
  "product_desc": "4k高清",
  "category_id": "3",
  "category_name": "电器",
  "service_period": "1年"
}

{
  "product_id": "3",
  "product_name": "基围虾",
  "product_desc": "纯天然,冰岛产",
  "category_id": "4",
  "category_name": "生鲜",
  "eat_period": "7天"
}

####8.shard

单台机器无法存储大量数据,es可以将一个索引中的数据切分为多个shard,分布在多台服务器上存储。有了shard就可以横向扩展,存储更多数据,让搜索和分析等操作分布到多台服务器上去执行,提升吞吐量和性能。每个shard都是一个lucene index。

9.replica

任何一个服务器随时可能故障或宕机,此时shard可能就会丢失,因此可以为每个shard创建多个replica副本。replica可以在shard故障时提供备用服务,保证数据不丢失,多个replica还可以提升搜索操作的吞吐量和性能。primary shard(建立索引时一次设置,不能修改,默认5个),replica shard(随时修改数量,默认1个),默认每个索引10个shard,5个primary shard,5个replica shard,最小的高可用配置,是2台服务器。

###3.简单语法

1.一般操作

1.新增
新增文档,建立索引
PUT /index/type/id
{
  "json数据"
}

PUT /ecommerce/product/1
{
  "name":"gaolujie yagao",
  "desc":"gaoxiao meibai",
  "price":30,
  "producer":"gaolujie producer",
  "tags":["meibai","fangzhu"]
}
2.检索文档
GET /index/type/id
GET /ecommerce/product/1

{
  "_index": "ecommerce",
  "_type": "product",
  "_id": "1",
  "_version": 1,
  "found": true,
  "_source": {
    "name": "gaolujie yagao",
    "desc": "gaoxiao meibai",
    "price": 30,
    "producer": "gaolujie producer",
    "tags": [
      "meibai",
      "fangzhu"
    ]
  }
}
3.更新文档
POST /ecommerce/product/1/_update
{
  "doc": {
    "name": "jiaqiangban gaolujie yagao"
  }
}

{
  "_index": "ecommerce",
  "_type": "product",
  "_id": "1",
  "_version": 8,
  "result": "updated",
  "_shards": {
    "total": 2,
    "successful": 1,
    "failed": 0
  }
}
4.删除文档
DELETE /ecommerce/product/1

{
  "found": true,
  "_index": "ecommerce",
  "_type": "product",
  "_id": "1",
  "_version": 9,
  "result": "deleted",
  "_shards": {
    "total": 2,
    "successful": 1,
    "failed": 0
  }
}

{
  "_index": "ecommerce",
  "_type": "product",
  "_id": "1",
  "found": false
}

2.query DSL

1.查询所有
GET /ecommerce/product/_search
{
  "query":{"match_all":{}}
}

2.查询名称包含yagao的商品,同时按照价格降序排序
GET /ecommerce/product/_search
{
    "query" : {
        "match" : {
            "name" : "yagao"
        }
    },
    "sort": [
        { "price": "desc" }
    ]
}

3.分页查询商品,总共3条商品,假设每页就显示1条商品,现在显示第2页,所以就查出来第2个商品
GET /ecommerce/product/_search
{
  "query": { "match_all": {} },
  "from": 1,
  "size": 1
}

4.指定要查询出来商品的名称和价格就可以
GET /ecommerce/product/_search
{
  "query": { "match_all": {} },
  "_source": ["name", "price"]
}

3.query filter

GET /ecommerce/product/_search
{
    "query" : {
        "bool" : {
            "must" : {
                "match" : {
                    "name" : "yagao" 
                }
            },
            "filter" : {
                "range" : {
                    "price" : { "gt" : 25 } 
                }
            }
        }
    }
}

4.full-text search(全文检索)

GET /ecommerce/product/_search
{
    "query" : {
        "match" : {
            "producer" : "yagao producer"
        }
    }
}
//倒序排序

5.phrase search(短语搜索)

与全文检索相对,必须在指定的字段文本中,包含一模一样的才可以匹配

GET /ecommerce/product/_search
{
    "query" : {
        "match_phrase" : {
            "producer" : "yagao producer"
        }
    }
}

{
  "took": 11,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "failed": 0
  },
  "hits": {
    "total": 1,
    "max_score": 0.70293105,
    "hits": [
      {
        "_index": "ecommerce",
        "_type": "product",
        "_id": "4",
        "_score": 0.70293105,
        "_source": {
          "name": "special yagao",
          "desc": "special meibai",
          "price": 50,
          "producer": "special yagao producer",
          "tags": [
            "meibai"
          ]
        }
      }
    ]
  }
}

6.highligh search(高亮搜索结果)

GET /ecommerce/product/_search
{
    "query" : {
        "match" : {
            "producer" : "producer"
        }
    },
    "highlight": {
        "fields" : {
            "producer" : {}
        }
    }
}

7.聚合

首先需要将文本field的fielddata属性设置为true

PUT /ecommerce/_mapping/product
{
  "properties": {
    "tags": {
      "type": "text",
      "fielddata": true
    }
  }
}
GET /ecommerce/product/_search
{
  "aggs": {
    "group_by_tags": {
      "terms": { "field": "tags" }
    }
  }
}

//返回
{
  "took": 40,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "failed": 0
  },
  "hits": {
    "total": 3,
    "max_score": 1,
    "hits": [
      {
        "_index": "ecommerce",
        "_type": "product",
        "_id": "2",
        "_score": 1,
        "_source": {
          "name": "jiajieshi yagao",
          "desc": "youxiao fangzhu",
          "price": 25,
          "producer": "jiajieshi producer",
          "tags": [
            "fangzhu"
          ]
        }
      },
      {
        "_index": "ecommerce",
        "_type": "product",
        "_id": "1",
        "_score": 1,
        "_source": {
          "name": "gaolujie yagao",
          "desc": "gaoxiao meibai",
          "price": 30,
          "producer": "gaolujie producer",
          "tags": [
            "meibai",
            "fangzhu"
          ]
        }
      },
      {
        "_index": "ecommerce",
        "_type": "product",
        "_id": "3",
        "_score": 1,
        "_source": {
          "name": "zhonghua yagao",
          "desc": "caoben zhiwu",
          "price": 40,
          "producer": "zhonghua producer",
          "tags": [
            "qingxin"
          ]
        }
      }
    ]
  },
  "aggregations": {
    "group_by_tags": {
      "doc_count_error_upper_bound": 0,
      "sum_other_doc_count": 0,
      "buckets": [
        {
          "key": "fangzhu",
          "doc_count": 2
        },
        {
          "key": "meibai",
          "doc_count": 1
        },
        {
          "key": "qingxin",
          "doc_count": 1
        }
      ]
    }
  }
}