js文档笔记4——异步操作

264 阅读13分钟

一.异步操作概述

1.单线程模型

单线程模型指的是,JavaScript 只在一个线程上运行。也就是说,JavaScript 同时只能执行一个任务,其他任务都必须在后面排队等待。

注意,JavaScript 只在一个线程上运行,不代表 JavaScript 引擎只有一个线程。事实上,JavaScript 引擎有多个线程,单个脚本只能在一个线程上运行(称为主线程),其他线程都是在后台配合。

JavaScript 从诞生起就是单线程,原因是不想让浏览器变得太复杂,因为多线程需要共享资源、且有可能修改彼此的运行结果,对于一种网页脚本语言来说,这就太复杂了。

(多线程要考虑各个线程间的交叉操作)

为了利用多核 CPU 的计算能力,HTML5 提出 Web Worker 标准,允许 JavaScript 脚本创建多个线程,但是子线程完全受主线程控制,且不得操作 DOM。所以,这个新标准并没有改变 JavaScript 单线程的本质。

总结:javascript是单线程模型,它在主线程上运行,但在主线程上允许创建子线程,子线程受主线程控制

2.同步任务和异步任务

1.同步任务是那些没有被引擎挂起、在主线程上排队执行的任务。只有前一个任务执行完毕,才能执行后一个任务。

2.异步任务是那些被引擎放在一边,不进入主线程、而进入任务队列的任务。只有引擎认为某个异步任务可以执行了(比如 Ajax 操作从服务器得到了结果),该任务(采用回调函数的形式)才会进入主线程执行。排在异步任务后面的代码,不用等待异步任务结束会马上运行,也就是说,异步任务不具有“堵塞”效应。

3.任务队列和事件循环

1.主线程会去执行所有的同步任务。等到同步任务全部执行完,就会去看任务队列里面的异步任务。如果满足条件,那么异步任务就重新进入主线程开始执行,这时它就变成同步任务了。等到执行完,下一个异步任务再进入主线程开始执行。一旦任务队列清空,程序就结束执行。

异步任务的写法通常是回调函数。一旦异步任务重新进入主线程,就会执行对应的回调函数。如果一个异步任务没有回调函数,就不会进入任务队列,也就是说,不会重新进入主线程,因为没有用回调函数指定下一步的操作。

2.JavaScript 引擎怎么知道异步任务有没有结果,能不能进入主线程呢?答案就是引擎在不停地检查,一遍又一遍,只要同步任务执行完了,引擎就会去检查那些挂起来的异步任务,是不是可以进入主线程了。这种循环检查的机制,就叫做事件循环(Event Loop)。

4.异步操作的模式

1.回调函数

回调函数的优点是简单、容易理解和实现,缺点是不利于代码的阅读和维护,各个部分之间高度耦合(coupling),使得程序结构混乱、流程难以追踪(尤其是多个回调函数嵌套的情况),而且每个任务只能指定一个回调函数。

function f1(callback) {
  // ...
  callback();
}

function f2() {
  // ...
}

f1(f2);

2.事件监听

另一种思路是采用事件驱动模式。异步任务的执行不取决于代码的顺序,而取决于某个事件是否发生。

f1.on('done', f2);
function f1() {
  setTimeout(function () {
    // ...
    f1.trigger('done');
  }, 1000);
}

3.发布/订阅

事件完全可以理解成“信号”,如果存在一个“信号中心”,某个任务执行完成,就向信号中心“发布”(publish)一个信号,其他任务可以向信号中心“订阅”(subscribe)这个信号,从而知道什么时候自己可以开始执行。这就叫做”发布/订阅模式”(publish-subscribe pattern),又称“观察者模式”(observer pattern)。

jQuery.subscribe('done', f2);
function f1() {
  setTimeout(function () {
    // ...
    jQuery.publish('done');
  }, 1000);
}

f2完成执行后,可以取消订阅(unsubscribe)。

jQuery.unsubscribe('done', f2);

5.异步操作的流程控制

如果有多个异步操作,就存在一个流程控制的问题:如何确定异步操作执行的顺序,以及如何保证遵守这种顺序。

1.串行执行

var items = [ 1, 2, 3, 4, 5, 6 ];
var results = [];

function async(arg, callback) {
  console.log('参数为 ' + arg +' , 1秒后返回结果');
  setTimeout(function () { callback(arg * 2); }, 1000);
}

function final(value) {
  console.log('完成: ', value);
}

function series(item) {
  if(item) {
    async( item, function(result) {
      results.push(result);
      return series(items.shift());
    });
  } else {
    return final(results[results.length - 1]);
  }
}

series(items.shift());

2.并行执行

var items = [ 1, 2, 3, 4, 5, 6 ];
var results = [];

function async(arg, callback) {
  console.log('参数为 ' + arg +' , 1秒后返回结果');
  setTimeout(function () { callback(arg * 2); }, 1000);
}

function final(value) {
  console.log('完成: ', value);
}

items.forEach(function(item) {
  async(item, function(result){
    results.push(result);
    if(results.length === items.length) {
      final(results[results.length - 1]);
    }
  })
});

并行执行的效率较高,比起串行执行一次只能执行一个任务,较为节约时间。但是问题在于如果并行的任务较多,很容易耗尽系统资源,拖慢运行速度。因此有了第三种流程控制方式。

3.并行与串行的结合

每次最多只能并行执行n个异步任务,这样就避免了过分占用系统资源。

var items = [ 1, 2, 3, 4, 5, 6 ];
var results = [];
var running = 0;
var limit = 2;

function async(arg, callback) {
  console.log('参数为 ' + arg +' , 1秒后返回结果');
  setTimeout(function () { callback(arg * 2); }, 1000);
}

function final(value) {
  console.log('完成: ', value);
}

function launcher() {
  while(running < limit && items.length > 0) {
    var item = items.shift();
    async(item, function(result) {
      results.push(result);
      running--;
      if(items.length > 0) {
        launcher();
      } else if(running == 0) {
        final(results);
      }
    });
    running++;
  }
}

launcher();

二.定时器

1.setTimeout()

除了前两个参数,setTimeout还允许更多的参数。它们将依次传入推迟执行的函数(回调函数)。

setTimeout(function (a,b) {
  console.log(a + b);
}, 1000, 1, 1);

2.setInterval()

setInterval函数的用法与setTimeout完全一致,区别仅仅在于setInterval指定某个任务每隔一段时间就执行一次,也就是无限次的定时执行。

3.clearTimeout(),clearInterval()

var id1 = setTimeout(f, 1000);
var id2 = setInterval(f, 1000);

clearTimeout(id1);
clearInterval(id2);

4.实例:debounce 函数

不希望回调函数被频繁调用是用到。

$('textarea').on('keydown', debounce(ajaxAction, 2500));

function debounce(fn, delay){
  var timer = null; // 声明计时器
  return function() {
    var context = this;
    var args = arguments;
    clearTimeout(timer);
    timer = setTimeout(function () {
      fn.apply(context, args);
    }, delay);
  };
}

5.运行机制

setTimeoutsetInterval的运行机制,是将指定的代码移出本轮事件循环,等到下一轮事件循环,再检查是否到了指定时间。如果到了,就执行对应的代码;如果不到,就继续等待。

这意味着,setTimeoutsetInterval指定的回调函数,必须等到本轮事件循环的所有同步任务都执行完,才会开始执行。所以没有办法保证,setTimeoutsetInterval指定的任务,一定会按照预定时间执行。

setTimeout(someTask, 100);
veryLongTask();

如果后面的veryLongTask函数(同步任务)运行时间非常长,过了100毫秒还无法结束,那么被推迟运行的someTask就只有等着,等到veryLongTask运行结束,才轮到它执行

setInterval(function () {
  console.log(2);
}, 1000);

sleep(3000);

function sleep(ms) {
  var start = Date.now();
  while ((Date.now() - start) < ms) {
  }
}

setInterval要求每隔1000毫秒,就输出一个2。但是,紧接着的sleep语句需要3000毫秒才能完成,那么setInterval就必须推迟到3000毫秒之后才开始生效。(3000毫秒后不需要再等1000毫秒)

6.setTimeout(f, 0)

setTimeout(f, 0)会在下一轮事件循环一开始就执行。(当成异步了)

应用

setTimeout(f, 0)有几个非常重要的用途。

1.它的一大应用是,可以调整事件的发生顺序。

**例如在事件冒泡中调整运行的先后顺序。**某个事件先发生在子元素,然后冒泡到父元素,即子元素的事件回调函数,会早于父元素的事件回调函数触发。如果,想让父元素的事件回调函数先发生,就要用到setTimeout(f, 0)

// HTML 代码如下
// <input type="button" id="myButton" value="click">

var input = document.getElementById('myButton');

input.onclick = function A() {
  setTimeout(function B() {
    input.value +=' input';
  }, 0)
};

document.body.onclick = function C() {
  input.value += ' body'
};

另一个应用是,用户自定义的回调函数,通常在浏览器的默认动作之前触发。比如,用户在输入框输入文本,keypress事件会在浏览器接收文本之前触发。因此,下面的回调函数是达不到目的的。

// HTML 代码如下
// <input type="text" id="input-box">

document.getElementById('input-box').onkeypress = function (event) {
  this.value = this.value.toUpperCase();
}

这时value还没值

document.getElementById('input-box').onkeypress = function() {
  var self = this;
  setTimeout(function() {
    self.value = self.value.toUpperCase();
  }, 0);
}

这样就能生效

2.由于setTimeout(f, 0)实际上意味着,将任务放到浏览器最早可得的空闲时段执行,所以那些计算量大、耗时长的任务,常常会被放到几个小部分,分别放到setTimeout(f, 0)里面执行。

var div = document.getElementsByTagName('div')[0];

// 写法一
for (var i = 0xA00000; i < 0xFFFFFF; i++) {
  div.style.backgroundColor = '#' + i.toString(16);
}

// 写法二
var timer;
var i=0x100000;

function func() {
  timer = setTimeout(func, 0);
  div.style.backgroundColor = '#' + i.toString(16);
  if (i++ == 0xFFFFFF) clearTimeout(timer);
}

timer = setTimeout(func, 0);

上面代码有两种写法,都是改变一个网页元素的背景色。写法一会造成浏览器“堵塞”,因为 JavaScript 执行速度远高于 DOM,会造成大量 DOM 操作“堆积”,而写法二就不会,这就是setTimeout(f, 0)的好处。

另一个使用这种技巧的例子是代码高亮的处理。如果代码块很大,一次性处理,可能会对性能造成很大的压力,那么将其分成一个个小块,一次处理一块,比如写成setTimeout(highlightNext, 50)的样子,性能压力就会减轻。

三.Promise 对象

1.概述

Promise 对象是 JavaScript 的异步操作解决方案,为异步操作提供统一接口。它起到代理作用(proxy),充当异步操作与回调函数之间的中介,使得异步操作具备同步操作的接口。Promise 可以让异步操作写起来,就像在写同步操作的流程,而不必一层层地嵌套回调函数。

2.Promise 对象的状态

Promise 对象通过自身的状态,来控制异步操作。Promise 实例具有三种状态。

  • 异步操作未完成(pending)
  • 异步操作成功(fulfilled)
  • 异步操作失败(rejected)

上面三种状态里面,fulfilledrejected合在一起称为resolved(已定型)。

这三种的状态的变化途径只有两种。

  • 从“未完成”到“成功”
  • 从“未完成”到“失败”

一旦状态发生变化,就凝固了,不会再有新的状态变化。这也是 Promise 这个名字的由来,它的英语意思是“承诺”,一旦承诺成效,就不得再改变了。这也意味着,Promise 实例的状态变化只可能发生一次。

因此,Promise 的最终结果只有两种。

  • 异步操作成功,Promise 实例传回一个值(value),状态变为fulfilled
  • 异步操作失败,Promise 实例抛出一个错误(error),状态变为rejected

3.Promise 构造函数

JavaScript 提供原生的Promise构造函数,用来生成 Promise 实例。

var promise = new Promise(function (resolve, reject) {
  // ...

  if (/* 异步操作成功 */){
    resolve(value);
  } else { /* 异步操作失败 */
    reject(new Error());
  }
});

上面代码中,Promise构造函数接受一个函数作为参数,该函数的两个参数分别是resolvereject。它们是两个函数,由 JavaScript 引擎提供,不用自己实现。

resolve函数的作用是,将Promise实例的状态从“未完成”变为“成功”

reject函数的作用是,将Promise实例的状态从“未完成”变为“失败”

4.Promise.prototype.then()

Promise 实例的then方法,用来添加回调函数。

then方法可以接受两个回调函数,第一个是异步操作成功时(变为fulfilled状态)的回调函数,第二个是异步操作失败(变为rejected)时的回调函数(该参数可以省略)。一旦状态改变,就调用相应的回调函数。

then方法可以链式使用。

p1
  .then(step1)
  .then(step2)
  .then(step3)
  .then(
    console.log,
    console.error
  );

上面代码中,p1后面有四个then,意味依次有四个回调函数。只要前一步的状态变为fulfilled,就会依次执行紧跟在后面的回调函数。

最后一个then方法,回调函数是console.logconsole.error,用法上有一点重要的区别。console.log只显示step3的返回值,而console.error可以显示p1step1step2step3之中任意一个发生的错误。举例来说,如果step1的状态变为rejected,那么step2step3都不会执行了(因为它们是resolved的回调函数)。Promise 开始寻找,接下来第一个为rejected的回调函数,在上面代码中是console.error。这就是说,Promise 对象的报错具有传递性。

5.then() 用法辨析

1.后续的then需要带参数的话,需要在前一个then中返回

promise.then(
  (res)=>{
    console.log('diyibu')
    let p1=new Promise((resolve,reject)=>{
      setTimeout(()=>{
        resolve('第二步完成')
      },1000)
    })
    return p1
  }
).then(
  (p1)=>{
    console.log(p1)

    /*p1.then(res=>{
      console.log('success2 '+res)
    }) */
    // 报错
  },
  (err)=>{
    console.error('error1 '+err)
  }
)

注释部分:第一个then,返回一个新的promise实例,也是在第二个then接收

2.只要在最后的then添加rejected的回调函数即可,前面就算执行了

promise.then(
  (res)=>{
    console.log('success1 '+res)
    return res
  },
  (err)=>{
    console.error('error1 '+err)
  }
).then((res)=>{
    console.log('success2 '+res)
  },
  (err)=>{
    console.error('error2 '+err)
  }
).then((res)=>{
    console.log('success3 '+res)
  },
  (err)=>{
    console.error('error3 '+err)
  }
)
// error1 1.6635966721894038
//success2 undefined
//success3 undefined

就算进入了第一个回调,后续还是会执行成功的方法

6.实例:图片加载

下面是使用 Promise 完成图片的加载。

var preloadImage = function (path) {
  return new Promise(function (resolve, reject) {
    var image = new Image();
    image.onload  = resolve;
    image.onerror = reject;
    image.src = path;
  });
};
preloadImage('https://example.com/my.jpg')
  .then(function (e) { document.body.append(e.target) })
  .then(function () { console.log('加载成功') })

上面代码中,图片加载成功以后,onload属性会返回一个事件对象,因此第一个then()方法的回调函数,会接收到这个事件对象。该对象的target属性就是图片加载后生成的 DOM 节点。

7.小结

Promise 的优点在于,让回调函数变成了规范的链式写法,程序流程可以看得很清楚。

有健全的接口,例如:Promise.all()

Promise 还有一个传统写法没有的好处:它的状态一旦改变,无论何时查询,都能得到这个状态。这意味着,无论何时为 Promise 实例添加回调函数,该函数都能正确执行。

Promise 还有一个传统写法没有的好处:它的状态一旦改变,无论何时查询,都能得到这个状态。这意味着,无论何时为 Promise 实例添加回调函数,该函数都能正确执行。所以,你不用担心是否错过了某个事件或信号。如果是传统写法,通过监听事件来执行回调函数,一旦错过了事件,再添加回调函数是不会执行的。

8.微任务

Promise 的回调函数属于异步任务,会在同步任务之后执行。

new Promise(function (resolve, reject) {
  resolve(1);
}).then(console.log);

console.log(2);
// 2
// 1

Promise 的回调函数不是正常的异步任务,而是微任务(microtask)。它们的区别在于,正常任务追加到下一轮事件循环,微任务追加到本轮事件循环。这意味着,微任务的执行时间一定早于正常任务。

setTimeout(function() {
  console.log(1);
}, 0);

new Promise(function (resolve, reject) {
  resolve(2);
}).then(console.log);

console.log(3);
// 3
// 2
// 1