《统计学习方法》第 14 章 聚类方法 KMeans

·  阅读 983

KMeans

k-均值聚类

n 个样本分到 k 个不同的类或簇,每个样本到其所属类的中心的距离最小。

每个样本只能属于一个类,所有 k-均值聚类硬聚类

模型

  • k < n
  • G_{i} \cap G_{j} = \varnothing, \bigcup_{i=1}^{k}G_{i} = X

策略

  • 距离: 欧式距离
  • 损失函数:样本与所属类的中心的距离总保
  • NP 困难问题

算法

目标函数极小化

  1. 初始化,随机取 k 个样本做中心
  2. 对样本进行聚类,计算样本到类中心距离,每个样本指派到与其最近的中心的类
  3. 计算新的类中心。对聚类结果计算样本的均值,做为新的类中心
  4. 如果迭代收敛或符合停止条件,输出。否则,令 t = t + 1 ,返回 2

KMeans

源码:github.com/iOSDevLog/s…

分类:
人工智能
标签:
分类:
人工智能
标签:
收藏成功!
已添加到「」, 点击更改