为什么HashMap不安全?

·  阅读 2788

一、Map概述

我们都知道HashMap是线程不安全的,但是HashMap的使用频率在所有map中确实属于比较高的。因为它可以满足我们大多数的场景了。

                                    Map类继承图
复制代码

Map是一个接口,我们常用的实现类有HashMap、LinkedHashMap、TreeMap,HashTable。HashMap根据key的hashCode值来保存value,需要注意的是,HashMap不保证遍历的顺序和插入的顺序是一致的。HashMap允许有一条记录的key为null,但是对值是否为null不做要求。HashTable类是线程安全的,它使用synchronize来做线程安全,全局只有一把锁,在线程竞争比较激烈的情况下hashtable的效率是比较低下的。因为当一个线程访问hashtable的同步方法时,其他线程再次尝试访问的时候,会进入阻塞或者轮询状态,比如当线程1使用put进行元素添加的时候,线程2不但不能使用put来添加元素,而且不能使用get获取元素。所以,竞争会越来越激烈。相比之下,ConcurrentHashMap使用了分段锁技术来提高了并发度,不在同一段的数据互相不影响,多个线程对多个不同的段的操作是不会相互影响的。每个段使用一把锁。所以在需要线程安全的业务场景下,推荐使用ConcurrentHashMap,而HashTable不建议在新的代码中使用,如果需要线程安全,则使用ConcurrentHashMap,否则使用HashMap就足够了。

LinkedHashMap属于HashMap的子类,与HashMap的区别在于LinkedHashMap保存了记录插入的顺序。TreeMap实现了SortedMap接口,TreeMap有能力对插入的记录根据key排序,默认按照升序排序,也可以自定义比较强,在使用TreeMap的时候,key应当实现Comparable。

二、HashMap的实现

java7和java8在实现HashMap上有所区别,当然java8的效率要更好一些,主要是java8的HashMap在java7的基础上增加了红黑树这种数据结构,使得在桶里面查找数据的复杂度从O(n)降到O(logn),当然还有一些其他的优化,比如resize的优化等。 介于java8的HashMap较为复杂,本文将基于java7的HashMap实现来说明,主要的实现部分还是一致的,java8的实现上主要是做了一些优化,内容还是没有变化的,依然是线程不安全的。

HashMap的实现使用了一个数组,每个数组项里面有一个链表的方式来实现,因为HashMap使用key的hashCode来寻找存储位置,不同的key可能具有相同的hashCode,这时候就出现哈希冲突了,也叫做哈希碰撞,为了解决哈希冲突,有开放地址方法,以及链地址方法。HashMap的实现上选取了链地址方法,也就是将哈希值一样的entry保存在同一个数组项里面,可以把一个数组项当做一个桶,桶里面装的entry的key的hashCode是一样的。

                            HashMap的结构模型(java8)
复制代码

上面的图片展示了我们的描述,其中有一个非常重要的数据结构Node<K,V>,这就是实际保存我们的key-value对的数据结构,下面是这个数据结构的主要内容:

        final int hash;    
        final K key;
        V value;
        Node<K,V> next;   
复制代码

一个Node就是一个链表节点,也就是我们插入的一条记录,明白了HashMap使用链地址方法来解决哈希冲突之后,我们就不难理解上面的数据结构,hash字段用来定位桶的索引位置,key和value就是我们的数据内容,需要注意的是,我们的key是final的,也就是不允许更改,这也好理解,因为HashMap使用key的hashCode来寻找桶的索引位置,一旦key被改变了,那么key的hashCode很可能就会改变了,所以随意改变key会使得我们丢失记录(无法找到记录)。next字段指向链表的下一个节点。

HashMap的初始桶的数量为16,loadFact为0.75,当桶里面的数据记录超过阈值的时候,HashMap将会进行扩容则操作,每次都会变为原来大小的2倍,直到设定的最大值之后就无法再resize了。

下面对HashMap的实现做简单的介绍,具体实现还得看代码,对于java8中的HashMap实现,还需要能理解红黑树这种数据结构。

1、根据key的hashCode来决定应该将该记录放在哪个桶里面,无论是插入、查找还是删除,这都是第一步,计算桶的位置。因为HashMap的length总是2的n次幂,所以可以使用下面的方法来做模运算:

                                    h&(length-1)
复制代码

h是key的hashCode值,计算好hashCode之后,使用上面的方法来对桶的数量取模,将这个数据记录落到某一个桶里面。当然取模是java7中的做法,java8进行了优化,做得更加巧妙,因为我们的length总是2的n次幂,所以在一次resize之后,当前位置的记录要么保持当前位置不变,要么就向前移动length就可以了。所以java8中的HashMap的resize不需要重新计算hashCode。我们可以通过观察java7中的计算方法来抽象出算法,然后进行优化,具体的细节看代码就可以了。

2、HashMap的put方法

                            HashMap的put方法处理逻辑(java8)
复制代码

上图展示了java8中put方法的处理逻辑,比java7多了红黑树部分,以及在一些细节上的优化,put逻辑和java7中是一致的。

3、resize机制

HashMap的扩容机制就是重新申请一个容量是当前的2倍的桶数组,然后将原先的记录逐个重新映射到新的桶里面,然后将原先的桶逐个置为null使得引用失效。后面会讲到,HashMap之所以线程不安全,就是resize这里出的问题。

3.1、为什么HashMap线程不安全?(jdk7版本)

上面说到,HashMap会进行resize操作,在resize操作的时候会造成线程不安全。下面将举两个可能出现线程不安全的地方。

1、put的时候导致的多线程数据不一致。 这个问题比较好想象,比如有两个线程A和B,首先A希望插入一个key-value对到HashMap中,首先计算记录所要落到的桶的索引坐标,然后获取到该桶里面的链表头结点,此时线程A的时间片用完了,而此时线程B被调度得以执行,和线程A一样执行,只不过线程B成功将记录插到了桶里面,假设线程A插入的记录计算出来的桶索引和线程B要插入的记录计算出来的桶索引是一样的,那么当线程B成功插入之后,线程A再次被调度运行时,它依然持有过期的链表头但是它对此一无所知,以至于它认为它应该这样做,如此一来就覆盖了线程B插入的记录,这样线程B插入的记录就凭空消失了,造成了数据不一致的行为。

2、另外一个比较明显的线程不安全的问题是HashMap的get操作可能因为resize而引起死循环(cpu100%),具体分析如下:

下面的代码是resize的核心内容:

这是jdk7的实现方式,jdk8不是这样的。

// 这个方法的功能是将原来的记录重新计算在新桶的位置,然后迁移过去。
void transfer(Entry[] newTable, boolean rehash) {  
        int newCapacity = newTable.length;  
        for (Entry<K,V> e : table) {  
            while(null != e) {  
                Entry<K,V> next = e.next;           
                if (rehash) {  
                    e.hash = null == e.key ? 0 : hash(e.key);  
                }  
                int i = indexFor(e.hash, newCapacity);   
                e.next = newTable[i];  
                newTable[i] = e;  
                e = next;  
            } 
        }  
    }  
复制代码

                                多线程HashMap的resize
复制代码

我们假设有两个线程同时需要执行resize操作,我们原来的桶数量为2,记录数为3,需要resize桶到4,原来的记录分别为:[3,A],[7,B],[5,C],在原来的map里面,我们发现这三个entry都落到了第二个桶里面。 假设线程thread1执行到了transfer方法的Entry next = e.next这一句,然后时间片用完了,此时的e = [3,A], next = [7,B]。线程thread2被调度执行并且顺利完成了resize操作,需要注意的是,此时的[7,B]的next为[3,A]。此时线程thread1重新被调度运行,此时的thread1持有的引用是已经被thread2 resize之后的结果。线程thread1首先将[3,A]迁移到新的数组上,然后再处理[7,B],而[7,B]被链接到了[3,A]的后面,处理完[7,B]之后,就需要处理[7,B]的next了啊,而通过thread2的resize之后,[7,B]的next变为了[3,A],此时,[3,A]和[7,B]形成了环形链表,在get的时候,如果get的key的桶索引和[3,A]和[7,B]一样,那么就会陷入死循环。

如果在取链表的时候从头开始取(现在是从尾部开始取)的话,则可以保证节点之间的顺序,那样就不存在这样的问题了。 综合上面两点,可以说明HashMap是线程不安全的。

3.2 为什么HashMap是不安全的?(jdk8版本)

根据上面JDK1.7出现的问题,在JDK1.8中已经得到了很好的解决,如果你去阅读1.8的源码会发现找不到transfer函数,因为JDK1.8直接在resize函数中完成了数据迁移。另外说一句,JDK1.8在进行元素插入时使用的是尾插法。

为什么说JDK1.8会出现数据覆盖的情况喃,我们来看一下下面这段JDK1.8中的put操作代码:

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
        if ((p = tab[i = (n - 1) & hash]) == null) // 如果没有hash碰撞则直接插入元素
            tab[i] = newNode(hash, key, value, null);
        else {
            Node<K,V> e; K k;
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else {
                for (int binCount = 0; ; ++binCount) {
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }

复制代码

其中第六行代码是判断是否出现hash碰撞,假设两个线程A、B都在进行put操作,并且hash函数计算出的插入下标是相同的,当线程A执行完第六行代码后由于时间片耗尽导致被挂起,而线程B得到时间片后在该下标处插入了元素,完成了正常的插入,然后线程A获得时间片,由于之前已经进行了hash碰撞的判断,所有此时不会再进行判断,而是直接进行插入,这就导致了线程B插入的数据被线程A覆盖了,从而线程不安全。

除此之前,还有就是代码的第38行处有个++size,我们这样想,还是线程A、B,这两个线程同时进行put操作时,假设当前HashMap的zise大小为10,当线程A执行到第38行代码时,从主内存中获得size的值为10后准备进行+1操作,但是由于时间片耗尽只好让出CPU,线程B快乐的拿到CPU还是从主内存中拿到size的值10进行+1操作,完成了put操作并将size=11写回主内存,然后线程A再次拿到CPU并继续执行(此时size的值仍为10),当执行完put操作后,还是将size=11写回内存,此时,线程A、B都执行了一次put操作,但是size的值只增加了1,所有说还是由于数据覆盖又导致了线程不安全。

总结: HashMap的线程不安全主要体现在下面两个方面:

1.在JDK1.7中,当并发执行扩容操作时会造成环形链和数据丢失的情况。

2.在JDK1.8中,在并发执行put操作时会发生数据覆盖的情况。

分类:
后端
标签:
分类:
后端
标签: