热力图绘制的一个新想法-分析数据

1,226 阅读1分钟

写在最前

数据可视化往往可以帮助我们分析特征构成,寻找特征区间,以及解释实验结果的功能。热力图是常用的数据可视化方法之一。

代码

def plot_heatmap(df, imagSavePath):
    """
    :param df: dataframe, which has column names
    :param imagSavePath: save the image to this path
    :return: no return, save files
    """
    matrix = abs(df.corr())
    plt.subplots(figsize=(50, 50))  # 设置画面大小
    sns.heatmap(matrix)
    plt.savefig(imagSavePath)

我们函数输入一个dataframe,然后吧图片写入到制定路径就可以了。一般直接打出来显示的不太清晰,还是保存起来比较好。

值得注意的是,corr()函数原本计算出来的相关矩阵取值范围是(-1,1),-1代表完全负相关,1代表完全正相关,0代表不相关。我认为在机器学习领域,负相关在某种意义上与正相关是一致的。所以不相关才是我们意想中的无意义。所以我给他加上了abs取绝对值