数据结构与算法-day1-复杂度分析(1)

284 阅读6分钟

数据结构是为算法服务的,算法要作用在特定的数据结构之上。

数据结构是静态的,它只是组织数据的一种方式。如果不在它的基础上操作、构建算法,孤立存在的数据结构就是没用的。

想要学习数据结构与算法,首先要掌握一个数据结构与算法中最重要的概念——复杂度分析。

这个概念究竟有多重要呢?可以这么说,它几乎占了数据结构和算法这门课的半壁江山,是数据结构和算法学习的精髓。

数据结构和算法解决的是如何更省、更快地存储和处理数据的问题,因此,我们就需要一个考量效率和资源消耗的方法,这就是复杂度分析方法。所以,如果你只掌握了数据结构和算法的特点、用法,但是没有学会复杂度分析,那就相当于只知道操作口诀,而没掌握心法。只有把心法了然于胸,才能做到无招胜有招!

所以,复杂度分析这个内容,我会用很大篇幅给你讲透。你也一定要花大力气来啃,必须要拿下,并且要搞得非常熟练。否则,后面的数据结构和算法也很难学好。

我来具体解释一下这个公式。其中,T(n) 我们已经讲过了,它表示代码执行的时间;n 表示数据规模的大小;f(n) 表示每行代码执行的次数总和。因为这是一个公式,所以用 f(n) 来表示。公式中的 O,表示代码的执行时间 T(n) 与 f(n) 表达式成正比

e.g:T(n) = O(2n+2)
T(n) = O(2n2+2n+3)

当 n 很大时,你可以把它想象成 10000、100000。而公式中的低阶、常量、系数三部分并不左右增长趋势,所以都可以忽略。我们只需要记录一个最大量级就可以了,如果用大 O 表示法表示两段代码的时间复杂度,就可以记为

T(n) = O(n); T(n) = O(n)

时间复杂度分析

  1. 只关注循环执行次数最多的一段代码

    意思就是 for循环的第一句赋值与后面循环次数相差太远,基本无影响,所有可以忽略前面的复制,只考虑后面循环的时间复杂度

  2. 加法准则:总复杂度等于量级最大的那段代码的复杂度

    int cal(int n) {
    int sum_1 = 0;
    int p = 1;
    for (; p < 100; ++p) {
     sum_1 = sum_1 + p;
    }
    
    int sum_2 = 0;
    int q = 1;
    for (; q < n; ++q) {
     sum_2 = sum_2 + q;
    }
    
    int sum_3 = 0;
    int i = 1;
    int j = 1;
    for (; i <= n; ++i) {
     j = 1; 
     for (; j <= n; ++j) {
       sum_3 = sum_3 +  i * j;
     }
    }
    
    return sum_1 + sum_2 + sum_3;
    

    分析:在上述代码中,因为第一段循环次数是固定次数,所以O(1),第二段时间复杂度为O(n),而第三段的时间复杂度为O(n2),在次数不断增长下,前两个基本可以忽略不计,所以整段代码为O(n2)

  3. 乘法准则:嵌套代码的复杂度等于嵌套内外复杂度的乘积

int cal(int n) {
   int ret = 0; 
   int i = 1;
   for (; i < n; ++i) {
     ret = ret + f(i);
   } 
 } 
 
 int f(int n) {
  int sum = 0;
  int i = 1;
  for (; i < n; ++i) {
    sum = sum + i;
  } 
  return sum;
 }

分析:我们单独看 cal() 函数。假设 f() 只是一个普通的操作,那第 4~6 行的时间复杂度就是,T1(n) = O(n)。但 f() 函数本身不是一个简单的操作,它的时间复杂度是T2(n) = O(n),所以,整个 cal() 函数的时间T(n) = T1(n) * T2(n) = O(n*n)

划黄线的是非多项式量级,其他的为多项式量级. 非多项式量级是低效的算法!!!!

  • O(1)

首先你必须明确一个概念,O(1) 只是常量级时间复杂度的一种表示方法,并不是指只执行了一行代码。

我稍微总结一下,只要代码的执行时间不随 n 的增大而增长,这样代码的时间复杂度我们都记作 O(1)。或者说,一般情况下,只要算法中不存在循环语句、递归语句,即使有成千上万行的代码,其时间复杂度也是Ο(1)。

  • O(logn)、O(nlogn)

对数阶时间复杂度非常常见,同时也是最难分析的一种时间复杂度。我通过一个例子来说明一下。

 i=1;
 while (i <= n)  {
   i = i * 2;
 }

从代码中可以看出,变量 i 的值从 1 开始取,每循环一次就乘以 2。当大于 n 时,循环结束。实际上,变量i的取值就是一个等比数列。如果我把它一个一个列出来,就应该是这个样子的:

所以,我们只要知道 x 值是多少,就知道这行代码执行的次数了。通过 2x=n 求解 x 这个问题我们想高中应该就学过了,我就不多说了。x=log2n,所以,这段代码的时间复杂度就是 O(log2n)。

在对数阶时间复杂度的表示方法里,我们忽略对数的“底”,统一表示为 O(logn)。

如果你理解了我前面讲的 O(logn),那 O(nlogn) 就很容易理解了。还记得我们刚讲的乘法法则吗?如果一段代码的时间复杂度是 O(logn),我们循环执行 n 遍,时间复杂度就是 O(nlogn) 了。而且,O(nlogn) 也是一种非常常见的算法时间复杂度。比如,归并排序、快速排序的时间复杂度都是 O(nlogn)。

  1. O(m+n)、O(m*n)

我们再来讲一种跟前面都不一样的时间复杂度,代码的复杂度由两个数据的规模来决定。

int cal(int m, int n) {
  int sum_1 = 0;
  int i = 1;
  for (; i < m; ++i) {
    sum_1 = sum_1 + i;
  }
 
  int sum_2 = 0;
  int j = 1;
  for (; j < n; ++j) {
    sum_2 = sum_2 + j;
  }
 
  return sum_1 + sum_2;
}

从代码中可以看出,m 和 n 是表示两个数据规模。我们无法事先评估 m 和 n 谁的量级大,所以我们在表示复杂度的时候,就不能简单地利用加法法则,省略掉其中一个。所以,上面代码的时间复杂度就是 O(m+n)。

针对这种情况,原来的加法法则就不正确了,我们需要将加法规则改为:T1(m) + T2(n) = O(f(m) + g(n))。但是乘法法则继续有效:T1(m)*T2(n) = O(f(m) * f(n))。