Java集合(二)-LinkedList源码解析

273 阅读8分钟

LinkedList是什么? 在上一章节中我们讲到了数组集合 ArrayList ,这节我们接着讲集合中的另一个成员 LinkedList ,就像它的名字说的一样,这是一个链表,在C语言中我们知道,链表是我们通过结构体实现的,那么在 Java 中我们应该怎样实现呢?

private static class Node<E> {
    E item;
    Node<E> next;
    Node<E> prev;

    Node(Node<E> prev, E element, Node<E> next) {
        this.item = element;
        this.next = next;
        this.prev = prev;
    }
}

这就是 LinkedList 用来保存元素的节点,Node类是 LinkedList 中的静态内部类,每一个 Node 对象代表一个元素,它具有三个属性,分别是用来存储元素的 item 对象,用来存储它上一个节点的 prev 对象,用来存储它下一个节点的 next 对象,那么我们就知道了 LinkedList 的内部是一个双链表。现在我们只需要知道 LinkedList 是怎样操作这些节点就行了。

首先我们来看看它的构造器:

构造器: /** * Constructs an empty list. */ public LinkedList() { }

/**
 * Constructs a list containing the elements of the specified
 * collection, in the order they are returned by the collection's
 * iterator.
 *
 * @param  c the collection whose elements are to be placed into this list
 * @throws NullPointerException if the specified collection is null
 */
public LinkedList(Collection<? extends E> c) {
    this();
    addAll(c);
}

LinkedList 不像 ArrayList 那样在初始化的时候传入集合容量,因为它的容量是可变的,与不可变的数组不同。在第二个构造器中我们看到当传入一个集合对象的时候会调用 addAll() 方法,那么我们接着看看 addAll() 的源码:

/**
 * Appends all of the elements in the specified collection to the end of
 * this list, in the order that they are returned by the specified
 * collection's iterator.  The behavior of this operation is undefined if
 * the specified collection is modified while the operation is in
 * progress.  (Note that this will occur if the specified collection is
 * this list, and it's nonempty.)
 *
 * @param c collection containing elements to be added to this list
 * @return {@code true} if this list changed as a result of the call
 * @throws NullPointerException if the specified collection is null
 */
public boolean addAll(Collection<? extends E> c) {
    return addAll(size, c);
}

/**
 * Inserts all of the elements in the specified collection into this
 * list, starting at the specified position.  Shifts the element
 * currently at that position (if any) and any subsequent elements to
 * the right (increases their indices).  The new elements will appear
 * in the list in the order that they are returned by the
 * specified collection's iterator.
 *
 * @param index index at which to insert the first element
 *              from the specified collection
 * @param c collection containing elements to be added to this list
 * @return {@code true} if this list changed as a result of the call
 * @throws IndexOutOfBoundsException {@inheritDoc}
 * @throws NullPointerException if the specified collection is null
 */
public boolean addAll(int index, Collection<? extends E> c) {
    checkPositionIndex(index);

    Object[] a = c.toArray();
    int numNew = a.length;
    if (numNew == 0)
        return false;

    Node<E> pred, succ;
    if (index == size) {
        succ = null;
        pred = last;
    } else {
        succ = node(index);
        pred = succ.prev;
    }

    for (Object o : a) {
        @SuppressWarnings("unchecked") E e = (E) o;
        Node<E> newNode = new Node<>(pred, e, null);
        if (pred == null)
            first = newNode;
        else
            pred.next = newNode;
        pred = newNode;
    }

    if (succ == null) {
        last = pred;
    } else {
        pred.next = succ;
        succ.prev = pred;
    }

    size += numNew;
    modCount++;
    return true;
}

我们从源码中看到:在 addAll() 方法中和 ArrayList 一样,首先调用传入集合的 toArray() 方法将集合中的元素转到数组中便于遍历,然后回先判断一下插入的位置是否在链表尾部(如果刚开始链表为空的话,那么也就等于是在链表尾部插入),然后根据两种情况进行不同的操作。最后将 size 值更新。

成员属性: transient int size = 0;

/**
 * Pointer to first node.
 * Invariant: (first == null && last == null) ||
 *            (first.prev == null && first.item != null)
 */
transient Node<E> first;

/**
 * Pointer to last node.
 * Invariant: (first == null && last == null) ||
 *            (last.next == null && last.item != null)
 */
transient Node<E> last;

我们再来看看 LinkedList 中的成员属性:size 值表示链表中的实际元素个数,跟 ArrayList的 size 值一样。

first 对象代表的是整个链表的头节点,last 对象代表的是整个链表的尾节点。

方法add(): /** * Links e as last element. / void linkLast(E e) { final Node l = last; final Node newNode = new Node<>(l, e, null); last = newNode; if (l == null) first = newNode; else l.next = newNode; size++; modCount++; }
/
* * Appends the specified element to the end of this list. * *

This method is equivalent to {@link #addLast}. * * @param e element to be appended to this list * @return {@code true} (as specified by {@link Collection#add}) */ public boolean add(E e) { linkLast(e); return true; }

再调用 add() 方法的时候,其实就是在调用 linkLast() 方法,定义两个节点常量分别对应链表的的尾节点和新插入的节点,然后将新节点插入尾部,判断链表是否为空,若为空则将链表的手节点和尾节点都指向新加入的节点,否则将原来尾节点与新节点相连。

在 LinkedList 中还有一个方法和 add() 方法相同:

方法 offer()、offerFirst()、offerLast(): /** * Adds the specified element as the tail (last element) of this list. * * @param e the element to add * @return {@code true} (as specified by {@link Queue#offer}) * @since 1.5 */ public boolean offer(E e) { return add(e); }

// Deque operations
/**
 * Inserts the specified element at the front of this list.
 *
 * @param e the element to insert
 * @return {@code true} (as specified by {@link Deque#offerFirst})
 * @since 1.6
 */
public boolean offerFirst(E e) {
    addFirst(e);
    return true;
}

/**
 * Inserts the specified element at the end of this list.
 *
 * @param e the element to insert
 * @return {@code true} (as specified by {@link Deque#offerLast})
 * @since 1.6
 */
public boolean offerLast(E e) {
    addLast(e);
    return true;
}

我们在 offer() 方法中就可以看到,它内部就是调用了 add() 方法,那为什么有了 add() 方法还要一个和它功能相同的 offer() 方法呢?这是因为这两个方法继承自不同的接口:add() 方法继承自 Collection 接口,而 offer() 方法继承自 Deque 接口,Collection 是集合接口,而 Deque 接口代表双向队列,LinkedList 在继承了这两个接口后必须重写这两个接口中的方法,所以就写的一样咯。offerFirst() 方法表示在链表首部加入一个节点元素,而offerLast() 方法就和 add() 方法一样,在尾部添加节点元素,我们看看这两个方法的执行流程:

/**
 * Inserts the specified element at the beginning of this list.
 *
 * @param e the element to add
 */
public void addFirst(E e) {
    linkFirst(e);
}

/**
 * Appends the specified element to the end of this list.
 *
 * <p>This method is equivalent to {@link #add}.
 *
 * @param e the element to add
 */
public void addLast(E e) {
    linkLast(e);
}

/**
 * Links e as first element.
 */
private void linkFirst(E e) {
    final Node<E> f = first;
    final Node<E> newNode = new Node<>(null, e, f);
    first = newNode;
    if (f == null)
        last = newNode;
    else
        f.prev = newNode;
    size++;
    modCount++;
}

/**
 * Links e as last element.
 */
void linkLast(E e) {
    final Node<E> l = last;
    final Node<E> newNode = new Node<>(l, e, null);
    last = newNode;
    if (l == null)
        first = newNode;
    else
        l.next = newNode;
    size++;
    modCount++;
}

它们最终调用的还是 linkFirst() 和 linkLast() 方法。

方法 remove(int index)、remove(Object o): LinkedList提供两种删除指定节点的方式:

(1)按节点下标删除:

/**
 * Removes the element at the specified position in this list.  Shifts any
 * subsequent elements to the left (subtracts one from their indices).
 * Returns the element that was removed from the list.
 *
 * @param index the index of the element to be removed
 * @return the element previously at the specified position
 * @throws IndexOutOfBoundsException {@inheritDoc}
 */
public E remove(int index) {
    checkElementIndex(index);
    return unlink(node(index));
}

private void checkElementIndex(int index) {
    if (!isElementIndex(index))
        throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}

/**
 * Tells if the argument is the index of an existing element.
 */
private boolean isElementIndex(int index) {
    return index >= 0 && index < size;
}

/**
 * Returns the (non-null) Node at the specified element index.
 */
Node<E> node(int index) {
    // assert isElementIndex(index);

    if (index < (size >> 1)) {
        Node<E> x = first;
        for (int i = 0; i < index; i++)
            x = x.next;
        return x;
    } else {
        Node<E> x = last;
        for (int i = size - 1; i > index; i--)
            x = x.prev;
        return x;
    }
}

/**
 * Unlinks non-null node x.
 */
E unlink(Node<E> x) {
    // assert x != null;
    final E element = x.item;
    final Node<E> next = x.next;
    final Node<E> prev = x.prev;

    if (prev == null) {
        first = next;
    } else {
        prev.next = next;
        x.prev = null;
    }

    if (next == null) {
        last = prev;
    } else {
        next.prev = prev;
        x.next = null;
    }

    x.item = null;
    size--;
    modCount++;
    return element;
}

可以看到调用 remove(int index) 方法时会先用 checkElementIndex() 和 isElementIndex() 方法检查给定下标的合法性,如果给定的下标 小于0 或  超出链表的长度 checkElementIndex() 方法就会抛出一 IndexOutOfBoundsException(outOfBoundsMsg(index)) 异常(下标越界异常)。如果下标合法的话则继续调用 node(int index) 方法,方法中会首先判断给定的下标在链表的前半段还是后半段(index << 1 等于 index/2),若在前半段:从链表头部遍历;若在后半段:从链表尾部向前遍历(可能这就是为什么用双链表的原因吧),遍历到给定下表的节点后返回此节点给 unlink(Node x) 方法删除节点:分删除头节点和其他节点两种情况,在这里就不做赘述了。

(2)按节点值删除:

/**
     * Removes the first occurrence of the specified element from this list,
     * if it is present.  If this list does not contain the element, it is
     * unchanged.  More formally, removes the element with the lowest index
     * {@code i} such that
     * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>
     * (if such an element exists).  Returns {@code true} if this list
     * contained the specified element (or equivalently, if this list
     * changed as a result of the call).
     *
     * @param o element to be removed from this list, if present
     * @return {@code true} if this list contained the specified element
     */
    public boolean remove(Object o) {
        if (o == null) {
            for (Node<E> x = first; x != null; x = x.next) {
                if (x.item == null) {
                    unlink(x);
                    return true;
                }
            }
        } else {
            for (Node<E> x = first; x != null; x = x.next) {
                if (o.equals(x.item)) {
                    unlink(x);
                    return true;
                }
            }
        }
        return false;
    }

按节点值删除因为 null 值的特性,所以需要先判断给定的节点值是否是 null 值,若是则遍历链表找到第一个值为 null  的节点删除,若不是,则用equals() 对比节点值和给定值。此中删除方法只删除第一个匹配到的节点。

方法 clear(): /** * Removes all of the elements from this list. * The list will be empty after this call returns. */ public void clear() { // Clearing all of the links between nodes is "unnecessary", but: // - helps a generational GC if the discarded nodes inhabit // more than one generation // - is sure to free memory even if there is a reachable Iterator for (Node x = first; x != null; ) { Node next = x.next; x.item = null; x.next = null; x.prev = null; x = next; } first = last = null; size = 0; modCount++; }

此方法负责清空链表所有节点,从头部遍历链表节点,一个一个清空 Node 对象,代码中 x.item = null;x.next = null;x.prev = null都是负责 help to gc的。