ArrayList 源码分析

137 阅读17分钟
原文链接: mp.weixin.qq.com

以下源码分析使用的 Java 版本为 1.8

1. 概览

ArrayList 是基于数组实现的,继承 AbstractList, 实现了 List、RandomAccess、Cloneable、Serializable 接口,支持随机访问。

java.util public class ArrayList<E> extends AbstractList<E>     implements List<E>, RandomAccess, Cloneable, java.io.Serializable

2. Java Doc 关键点:

  • 实现List接口的动态数组,容量大小为 capacity,默认的容量大小 10,会自动扩容

  • 可包含空元素 null

  • size, isEmpty, get, set, iterator, and listIterator 等操作的复杂度为 O(1),The add operation runs in amortized constant time, that is, adding n elements requires O(n) time,其它操作为线性时间

  • 非线程安全,多线程环境下必须在外部增加同步限制,或者使用包装对象 List list = Collections.synchronizedList(new ArrayList(…));

  • 快速失败:在使用迭代器时,调用迭代器的添加、修改、删除方法,将抛出 ConcurrentModificationException 异常,但是快速失败行为不是硬保证的,只是尽最大努力

3. 成员属性

当添加第一个元素时,elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA 的任何空ArrayList都将扩展为默认的capacity

private static final int DEFAULT_CAPACITY = 10; // 默认容量大小private static final Object[] EMPTY_ELEMENTDATA = {}; // ArrayList空实例共享的一个空数组private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {}; // ArrayList空实例共享的一个空数组,用于默认大小的空实例。与 EMPTY_ELEMENTDATA 分开,这样就可以了解当添加第一个元素时需要创建多大的空间transient Object[] elementData; // 真正存储ArrayList中的元素的数组private int size;   // 存储ArrayList的大小,注意不是elementData的长度private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8; // 数组的最大长度protected transient int modCount = 0; //AbstractList类的,表示 elementData在结构上被修改的次数,每次add或者remove它的值都会加1

4. 构造方法

// 无参构造方法,默认初始容量10public ArrayList() {    this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;}// 提供初始容量的构造方法public ArrayList(int initialCapacity) {    if (initialCapacity > 0) {        this.elementData = new Object[initialCapacity];    } else if (initialCapacity == 0) {        this.elementData = EMPTY_ELEMENTDATA;    } else {        throw new IllegalArgumentException("Illegal Capacity: "+                                           initialCapacity);    }}// 通过一个容器来初始化public ArrayList(Collection<? extends E> c) {    elementData = c.toArray();     if ((size = elementData.length) != 0) { // c.toArray 返回的可能不是  Object[]        if (elementData.getClass() != Object[].class)            elementData = Arrays.copyOf(elementData, size, Object[].class);    } else {        this.elementData = EMPTY_ELEMENTDATA; // replace with empty array.    }}

5. 添加元素与扩容

添加元素时使用 ensureCapacityInternal() 方法来保证容量足够,size + 1 为最少需要的空间大小,如果elementData的长度不够时,需要使用 grow() 方法进行扩容

// 添加一个元素public boolean add(E e) {    ensureCapacityInternal(size + 1);  // Increments modCount!!    elementData[size++] = e;    return true;}// 计算最少需要的容量private static int calculateCapacity(Object[] elementData, int minCapacity) {    if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {         // 默认的空实例第一次添加元素时,使用默认的容量大小与minCapacity的最大值        return Math.max(DEFAULT_CAPACITY, minCapacity);    }    return minCapacity;}private void ensureCapacityInternal(int minCapacity) {    ensureExplicitCapacity(calculateCapacity(elementData, minCapacity));}private void ensureExplicitCapacity(int minCapacity) {    modCount++;     if (minCapacity - elementData.length > 0) // 需要的容量大于elementData的长度        grow(minCapacity);  // 进行扩容}

扩容:当新容量小于等于 MAX_ARRAY_SIZE 时,新容量的大小为 oldCapacity + (oldCapacity >> 1)minCapacity 之间的较大值 ,也就是旧容量的 1.5 倍与 minCapacity 之间的较大值

private void grow(int minCapacity) {    int oldCapacity = elementData.length; // 原本的容量    int newCapacity = oldCapacity + (oldCapacity >> 1); // 新的容量    if (newCapacity - minCapacity < 0)        newCapacity = minCapacity;    if (newCapacity - MAX_ARRAY_SIZE > 0)        newCapacity = hugeCapacity(minCapacity);    elementData = Arrays.copyOf(elementData, newCapacity);}private static int hugeCapacity(int minCapacity) {    if (minCapacity < 0) // overflow        throw new OutOfMemoryError();    return (minCapacity > MAX_ARRAY_SIZE) ? Integer.MAX_VALUE : MAX_ARRAY_SIZE;}

最后调用 Arrays.copyOf 复制原数组,将 elementData 赋值为得到的新数组。由于数组复制代价较高,所以建议在创建 ArrayList 对象时就指定大概的容量大小,减少扩容操作的次数

public class Arrays {    public static <T> T[] copyOf(T[] original, int newLength) {        return (T[]) copyOf(original, newLength, original.getClass());    }    public static <T,U> T[] copyOf(U[] original, int newLength, Class<? extends T[]> newType) {        @SuppressWarnings("unchecked")        T[] copy = ((Object)newType == (Object)Object[].class)            ? (T[]) new Object[newLength] : (T[]) Array.newInstance(newType.getComponentType(), newLength);        System.arraycopy(original, 0, copy, 0, Math.min(original.length, newLength));        return copy;    }    //...}

通过 addAll 添加一个集合中所有元素时的扩容:至少需要的容量为两个集合的长度之和,同样是通过 ensureCapacityInternal() 来保证容量是足够的,然后调用 System.arraycopy 将要添加的集合中的元素复制到原集合已有元素的后面

public boolean addAll(Collection<? extends E> c) {    Object[] a = c.toArray();    int numNew = a.length;    ensureCapacityInternal(size + numNew);  // Increments modCount    System.arraycopy(a, 0, elementData, size, numNew); // 复制元素到原数组尾部    size += numNew;    return numNew != 0;}

6. 删除元素

删除指定下标的元素时,如果下标没有越界,则取出下标对应的值,然后将数组中该下标后面的元素都往前挪1位,需要挪的元素数量是 size - index - 1,时间复杂度为 O(n),所以删除元素的代价挺高

public E remove(int index) {    rangeCheck(index); // 检查下标是否在数组的长度范围内    modCount++;    E oldValue = elementData(index); // 下标为index的值    int numMoved = size - index - 1; // 需要移动的元素数量    if (numMoved > 0)        System.arraycopy(elementData, index+1, elementData, index, numMoved);    elementData[--size] = null; // clear to let GC do its work    return oldValue;}private void rangeCheck(int index) {    if (index >= size)          throw new IndexOutOfBoundsException(outOfBoundsMsg(index));}

删除在指定集合中的所有元素 removeAll,删除不在指定集合中的所有元素 retainAll

这两者都是通过 batchRemove 来批量删除

// 删除在指定集合中的所有元素public boolean removeAll(Collection<?> c) {    Objects.requireNonNull(c);  // c 不能为null    return batchRemove(c, false);}// 删除不在指定集合中的所有元素,也就是只保留指定集合中的元素,其它的都删除掉public boolean retainAll(Collection<?> c) {    Objects.requireNonNull(c);    return batchRemove(c, true);}// 批量删除private boolean batchRemove(Collection<?> c, boolean complement) {    final Object[] elementData = this.elementData;    int r = 0, w = 0;   // r为当前下标,w为当前需要保留的元素的数量(或者说是下一个需保留元素的下标)    boolean modified = false;    try {        for (; r < size; r++)            if (c.contains(elementData[r]) == complement)   // 判断元素 elementData[r] 是否需要删除                elementData[w++] = elementData[r];    } finally {        // r != size 的情况可能是 c.contains() 抛出了异常,将 r 之后的元素复制到 w 之后        if (r != size) {             System.arraycopy(elementData, r, elementData, w, size - r);            w += size - r;        }        if (w != size) {            // w 之后的元素设置为 null 以让 GC 回收            for (int i = w; i < size; i++)                 elementData[i] = null;              modCount += size - w;            size = w;            modified = true;        }    }    return modified;}

删除第一个值为指定值的元素 remove(Object o),参数 o 可以为 null

fastRemove(int index)remove(int index) 几乎一样,只不过不返回被删除的元素

public boolean remove(Object o) {    if (o == null) {        for (int index = 0; index < size; index++)            if (elementData[index] == null) {                fastRemove(index);                return true;            }    } else {        for (int index = 0; index < size; index++)            if (o.equals(elementData[index])) {                fastRemove(index);                return true;            }    }    return false;}private void fastRemove(int index) {    modCount++;    int numMoved = size - index - 1;    if (numMoved > 0)        System.arraycopy(elementData, index+1, elementData, index,                         numMoved);    elementData[--size] = null; // clear to let GC do its work}

7. 遍历

ArrayList 支持三种方式:

  • for循环下标遍历

  • 迭代器(Iterator和ListIterator)

  • foreach 语句

迭代器 Iterator 和 ListIterator 的主要区别:

ArrayList 的迭代器 Iterator 和 ListIterator 在《设计模式 | 迭代器模式及典型应用》这篇文章中有过详细介绍,这里只做一个小结

  • ListIterator 有 add() 方法,可以向List中添加对象,而 Iterator 不能

  • ListIterator 和 Iterator 都有 hasNext() 和 next() 方法,可以实现顺序向后遍历,但是 ListIterator 有 hasPrevious() 和 previous() 方法,可以实现逆向(顺序向前)遍历。Iterator 就不可以。

  • ListIterator 可以定位当前的索引位置,nextIndex() 和 previousIndex() 可以实现。Iterator 没有此功能。

  • 都可实现删除对象,但是 ListIterator 可以实现对象的修改,set() 方法可以实现。Iierator 仅能遍历,不能修改

foreach 循环:

foreach 循环涉及到一个 Consumer 接口,接收一个泛型的参数T,当调用 accept 方法时,Stream流中将对 accept 的参数做一系列的操作

public void forEach(Consumer<? super E> action) {    Objects.requireNonNull(action);    final int expectedModCount = modCount;  // 记录当前的 modCount    @SuppressWarnings("unchecked")    final E[] elementData = (E[]) this.elementData;    final int size = this.size;    for (int i=0; modCount == expectedModCount && i < size; i++) {        action.accept(elementData[i]);    }    if (modCount != expectedModCount) {        throw new ConcurrentModificationException();    }}

8. 序列化

ArrayList 有两个属性被 transient 关键字 修饰,transient 关键字 的作用:让某些被修饰的成员属性变量不被序列化

transient Object[] elementData;protected transient int modCount = 0;

为什么最为重要的数组元素要用 transient 修饰呢?

跟Java的序列化机制有关,这里列出Java序列化机制的几个要点:

  • 需要序列化的类必须实现java.io.Serializable接口,否则会抛出NotSerializableException异常

  • 若没有显示地声明一个serialVersionUID变量,Java序列化机制会根据编译时的class自动生成一个serialVersionUID作为序列化版本比较(验证一致性),如果检测到反序列化后的类的serialVersionUID和对象二进制流的serialVersionUID不同,则会抛出异常

  • Java的序列化会将一个类包含的引用中所有的成员变量保存下来(深度复制),所以里面的引用类型必须也要实现java.io.Serializable接口

  • 当某个字段被声明为transient后,默认序列化机制就会忽略该字段,反序列化后自动获得0或者null值

  • 静态成员不参与序列化

  • 每个类可以实现readObject、writeObject方法实现自己的序列化策略,即使是transient修饰的成员变量也可以手动调用ObjectOutputStream的writeInt等方法将这个成员变量序列化。

  • 任何一个readObject方法,不管是显式的还是默认的,它都会返回一个新建的实例,这个新建的实例不同于该类初始化时创建的实例

  • 每个类可以实现private Object readResolve()方法,在调用readObject方法之后,如果存在readResolve方法则自动调用该方法,readResolve将对readObject的结果进行处理,而最终readResolve的处理结果将作为readObject的结果返回。readResolve的目的是保护性恢复对象,其最重要的应用就是保护性恢复单例、枚举类型的对象

所以问题的答案是:ArrayList 不想用Java序列化机制的默认处理来序列化 elementData 数组,而是通过 readObject、writeObject 方法自定义序列化和反序列化策略。

问题又来了,为什么不用Java序列化机制的默认处理来序列化 elementData 数组呢

答案是因为效率问题,如果用默认处理来序列化的话,如果 elementData 的长度有100,但是实际只用了50,其实剩余的50是可以不用序列化的,这样可以提高序列化和反序列化的效率,节省空间。

现在来看 ArrayList 中自定义的序列化和反序列化策略

private static final long serialVersionUID = 8683452581122892189L;private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException{    int expectedModCount = modCount;    s.defaultWriteObject(); // 默认的序列化策略,序列化其它的字段    s.writeInt(size);   // 实际用的长度,而不是容量    for (int i=0; i<size; i++) {  // 只序列化数组的前 size 个对象        s.writeObject(elementData[i]);    }    if (modCount != expectedModCount) {        throw new ConcurrentModificationException();    }}private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException {    elementData = EMPTY_ELEMENTDATA;    // Read in size, and any hidden stuff    s.defaultReadObject();    s.readInt(); // ignored    if (size > 0) {        int capacity = calculateCapacity(elementData, size);        SharedSecrets.getJavaOISAccess().checkArray(s, Object[].class, capacity);        ensureCapacityInternal(size);        Object[] a = elementData;        for (int i=0; i<size; i++) {            a[i] = s.readObject();        }    }}

9. 快速失败(fail-fast)

modCount 用来记录 ArrayList 结构发生变化的次数,如果一个动作前后 modCount 的值不相等,说明 ArrayList 被其它线程修改了

如果在创建迭代器之后的任何时候以任何方式修改了列表(增加、删除、修改),除了通过迭代器自己的remove 或 add方法,迭代器将抛出 ConcurrentModificationException 异常

需要注意的是:这里异常的抛出条件是检测到 modCount != expectedmodCount,如果并发场景下一个线程修改了modCount值时另一个线程又 "及时地" 修改了expectedmodCount值,则异常不会抛出。所以不能依赖于这个异常来检测程序的正确性。

private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException{    int expectedModCount = modCount;    // 记录下当前的 modCount    // 一些操作之后....    if (modCount != expectedModCount) { // 比较现在与之前的 modCount,不相等表示在中间过程中被修改了        throw new ConcurrentModificationException();    }}private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException{    int expectedModCount = modCount;    // 一些操作之后....    if (modCount != expectedModCount) {        throw new ConcurrentModificationException();    }}public void forEach(Consumer<? super E> action) {    final int expectedModCount = modCount;    // 一些操作之后....    if (modCount != expectedModCount) {        throw new ConcurrentModificationException();    }}public boolean removeIf(Predicate<? super E> filter) {    final int expectedModCount = modCount;    // 一些操作之后....    if (modCount != expectedModCount) {        throw new ConcurrentModificationException();    }}public void replaceAll(UnaryOperator<E> operator) {    final int expectedModCount = modCount;    // 一些操作之后....    if (modCount != expectedModCount) {        throw new ConcurrentModificationException();    }    modCount++; // 修改了要加一}public void sort(Comparator<? super E> c) {    final int expectedModCount = modCount;    // 一些操作之后....    if (modCount != expectedModCount) {        throw new ConcurrentModificationException();    }    modCount++;}// 内部迭代器private class Itr implements Iterator<E> {    public void forEachRemaining(Consumer<? super E> consumer) {        checkForComodification();    }    final void checkForComodification() {        if (modCount != expectedModCount)            throw new ConcurrentModificationException();    }}

后记

欢迎评论、转发、分享,您的支持是我最大的动力

更多内容可访问我的个人博客:http://laijianfeng.org

关注【小旋锋】微信公众号,及时接收博文推送

关注_小旋锋_微信公众号