Glide4.8源码拆解(三)Registry和数据转换流程

1,721 阅读10分钟

前言

Registry是Glide中非常重要的知识,可以把它理解成连结各个核心功能模块的集中营或者挂载中心,这一章节就来分解它是如何建立和运作的:

本章要讨论的内容:

  • Registry的基本构成;
  • 各个模块的功能和介绍;
  • 数据的转换流程;

从Registry开始

Registry是一个组件管理类,它的主要用途是扩展和替换Glide组件,这些组件包括加载,编码,解码等逻辑;Registry内部支持的模块类型如下: Registry.java

  private final ModelLoaderRegistry modelLoaderRegistry;
  private final EncoderRegistry encoderRegistry;
  private final ResourceDecoderRegistry decoderRegistry;
  private final ResourceEncoderRegistry resourceEncoderRegistry;
  private final DataRewinderRegistry dataRewinderRegistry;
  private final TranscoderRegistry transcoderRegistry;//Resource转换模块注册
  private final ImageHeaderParserRegistry imageHeaderParserRegistry;//文件头解析模块注册

Registry并不是承当所有模块的注册工作,而是把各个模块分配的不同的Registry当中; 主要模块的功能:

  • ModelLoaderRegistry ://数据加载模块注册
  • EncoderRegistry://所有对数据进行编码模块的注册
  • ResourceDecoderRegistry://处理过的解码模块注册
  • ResourceEncoderRegistry://处理过的编码模块注册
  • DataRewinderRegistry : //数据流重置起点模块注册
  • TranscoderRegistry: // Resource进行转换模块注册
  • ImageHeaderParserRegistry //图片头解析模块注册

Glide自身充当对外调用的门户,Registry提供了一下入口方法来实现各个模块的注册和调用;主要方法如下:

注册相关方法:

  • append() //尾步追加
  • prepend() //头部插入
  • register() //注册,相当于append()
  • replace() //替换掉相同条件的所有模块

操作相关的方法:

  • getLoadPath()//获取加载路径
  • getDecodePaths() //获取解析路径
  • getRegisteredResourceClasses()//获取所有匹配的ResourceClasses;
  • isResourceEncoderAvailable()//ResourceEncoder是否可用;
  • getResultEncoder()//获取Encoder;
  • getRewinder()//获取Rewinder;
  • getModelLoaders()//获取ModelLoader;

总结:Registry通过内部Registry分别管理不同类型的组件,Registry提供统一的入口方法来实现注册和获取;

下面对各个模块基本介绍:

模块简要分析

ModelLoader

ModelLoader是通过ModelLoaderRegistry进行管理,ModelLoader需要接受两个泛型类型<Model,Data>ModelLoader本身是一个工厂接口,主要工作是将复杂数据模型转通过DataFetcher转换成需要的Data,LoadData是ModelLoader的内部类,是对DataFetcher和Key的封装实体,ModelLoader的创建用ModelLoaderFactory,一个基本的ModelLoader创建应该是这个样子的: 参考HttpGlideUrlLoader

第一步:自定义类实现自ModelLoader,重写BuildLoadData()方法和handles()方法;

public class HttpGlideUrlLoader implements ModelLoader<GlideUrl, InputStream> {

  @Nullable private final ModelCache<GlideUrl, GlideUrl> modelCache;

  public HttpGlideUrlLoader() {
    this(null);
  }

  public HttpGlideUrlLoader(@Nullable ModelCache<GlideUrl, GlideUrl> modelCache) {
    this.modelCache = modelCache;
  }

  @Override
  public LoadData<InputStream> buildLoadData(@NonNull GlideUrl model, int width, int height,
      @NonNull Options options) {
    GlideUrl url = model;
    if (modelCache != null) {
      url = modelCache.get(model, 0, 0);
      if (url == null) {
        modelCache.put(model, 0, 0, model);
        url = model;
      }
    }
    int timeout = options.get(TIMEOUT);
    return new LoadData<>(url, new HttpUrlFetcher(url, timeout));
  }

  @Override
  public boolean handles(@NonNull GlideUrl model) {
    return true;
  }
 }

buildLoadData()需要创建LoadData,需要传入Key和DataFetcher,handles()返回值代表是否接受当前model类型的,true代表接受,所以一般都是true;

第二步:自定义Fetcher实现DataFecher,重写loadData()、cleanup()、cancel()、getDataClass()、getDataSource()方法;

public class HttpUrlFetcher implements DataFetcher<InputStream> {
 public void loadData(@NonNull Priority priority,
      @NonNull DataCallback<? super InputStream> callback) {
    long startTime = LogTime.getLogTime();
    try {
      InputStream result = loadDataWithRedirects(glideUrl.toURL(), 0, null, glideUrl.getHeaders());
      callback.onDataReady(result);
    } catch (IOException e) {
      if (Log.isLoggable(TAG, Log.DEBUG)) {
        Log.d(TAG, "Failed to load data for url", e);
      }
      callback.onLoadFailed(e);
    } finally {
      if (Log.isLoggable(TAG, Log.VERBOSE)) {
        Log.v(TAG, "Finished http url fetcher fetch in " + LogTime.getElapsedMillis(startTime));
      }
    }
  }
  //清理工作
  @Override
  public void cleanup() {
    if (stream != null) {
      try {
        stream.close();
      } catch (IOException e) {
    
      }
    }
    if (urlConnection != null) {
      urlConnection.disconnect();
    }
    urlConnection = null;
  }
  //取消请求
  @Override
  public void cancel() {
    isCancelled = true;
  }
  //返回Data类型
  @NonNull
  @Override
  public Class<InputStream> getDataClass() {
    return InputStream.class;
  }
  //返回DataSource
  @NonNull
  @Override
  public DataSource getDataSource() {
    return DataSource.REMOTE;
  }
}

第三步:创建Factory类,重写build()、teardown()方法,在build()方法中返回真正的MolderLoader对象;

public static class Factory implements ModelLoaderFactory<GlideUrl, InputStream> {
    private final ModelCache<GlideUrl, GlideUrl> modelCache = new ModelCache<>(500);

    @NonNull
    @Override
    public ModelLoader<GlideUrl, InputStream> build(MultiModelLoaderFactory multiFactory) {
      return new HttpGlideUrlLoader(modelCache);//创建ModelLoader
    }

    @Override
    public void teardown() {
      // Do nothing.
    }
  }

接下来,就可以在Registry中注册ModelLoader了;在第一章我们简单说过模块的配置可以用Annotation和Manifest两种类型,在registerComponents()方法中,可以拿到Registry,这样就可以调用registry的注册相关方法;

@Override
  public void registerComponents(Context context, Registry registry) {
    registry.replace(GlideUrl.class, InputStream.class, new HttpGlideUrlLoader.Factory(context));
  }

最后,说一下泛型<Model,Data>接受的范围,Model代表用户输入的类型,理论上可以用任意数据类型,主要的输入点在Glide.with().load(model); Data理论上也可以是任意数据类型,但基于后续流程的支持,一般都是File,InputStreamByteBuffer;

ResourceDecoder

ResourceDecoder是一个解析Resource的接口,接受两个泛型<T,Z>,定义了两个方法handles()decode,参考一个简单的BitmapDecoder:

public class StreamBitmapDecoder implements ResourceDecoder<InputStream, Bitmap> {

  private final Downsampler downsampler;
  private final ArrayPool byteArrayPool;

  public StreamBitmapDecoder(Downsampler downsampler, ArrayPool byteArrayPool) {
    this.downsampler = downsampler;
    this.byteArrayPool = byteArrayPool;
  }

  @Override
  public boolean handles(@NonNull InputStream source, @NonNull Options options) {
    return downsampler.handles(source);
  }
   @Override
  public Resource<Bitmap> decode(@NonNull InputStream source, int width, int height,
      @NonNull Options options)
      throws IOException {
    ...
    try {
      return downsampler.decode(invalidatingStream, width, height, options, callbacks);
    } finally {
      exceptionStream.release();
      if (ownsBufferedStream) {
        bufferedStream.release();
      }
    }
  }
 }

泛型解析:T表示输入类型一般为FileInputStream或者ByteBufferZ表示输出类型,一般为BitmapDrawable

Encoder和ResourceEncoder

Encoder表面意思为加密,本质上和加密没有关系,主要作用是将T持久化到本地cache;Encode接受泛型T,而这个T可以是InputStreamByteBufferResource<T>ResourceEncoder继承Encoder<Resource<T>>,接受泛型T,而Resource中的T一般取值范围为:BitmapBitmapDrawableGifDrawable;

我们分析一下把Bitmap持久化到本地cache的类:BitmapEncoder

public class BitmapEncoder implements ResourceEncoder<Bitmap> {
  @Override
  public boolean encode(@NonNull Resource<Bitmap> resource, @NonNull File file,
      @NonNull Options options) {
    final Bitmap bitmap = resource.get();
    Bitmap.CompressFormat format = getFormat(bitmap, options);
    GlideTrace.
        beginSectionFormat("encode: [%dx%d] %s", bitmap.getWidth(), bitmap.getHeight(), format);
    try {
      long start = LogTime.getLogTime();
      int quality = options.get(COMPRESSION_QUALITY);

      boolean success = false;
      OutputStream os = null;
      try {
        os = new FileOutputStream(file);
        if (arrayPool != null) {
          os = new BufferedOutputStream(os, arrayPool);
        }
        bitmap.compress(format, quality, os);
        os.close();
        success = true;
      } catch (IOException e) {
        if (Log.isLoggable(TAG, Log.DEBUG)) {
          Log.d(TAG, "Failed to encode Bitmap", e);
        }
      } finally {
        if (os != null) {
          try {
            os.close();
          } catch (IOException e) {
            // Do nothing.
          }
        }
      }

      return success;
    } finally {
      GlideTrace.endSection();
    }
  }
}

BitmapEncoder重写encode()方法,该方法中入参file代表将要保存的cache文件;encode基本流程是:根据File得到输出流OutPutStream,调用Bitmap.compress将bitmap写入输出流,然后关闭流等等处理;

DataRewinder

DataRewinder是一个接口,作用是将流进行rewinding,主要的方法是rewindAndGet();Glide中有两个有意义的实现类:InputStreamRewinderByteBufferRewinder,简单看一下这两个类是实现:

ByteBufferRewinder.java

public class ByteBufferRewinder implements DataRewinder<ByteBuffer> {
  private final ByteBuffer buffer;

  @SuppressWarnings("WeakerAccess")
  public ByteBufferRewinder(ByteBuffer buffer) {
    this.buffer = buffer;
  }

  @NonNull
  @Override
  public ByteBuffer rewindAndGet() {
    buffer.position(0);
    return buffer;
  }

  @Override
  public void cleanup() {
    // Do nothing.
  }

InputStreamRewinder.java

public final class InputStreamRewinder implements DataRewinder<InputStream> {
  // 5mb.
  private static final int MARK_LIMIT = 5 * 1024 * 1024;

  private final RecyclableBufferedInputStream bufferedStream;

  @Synthetic
  InputStreamRewinder(InputStream is, ArrayPool byteArrayPool) {
    bufferedStream = new RecyclableBufferedInputStream(is, byteArrayPool);
    bufferedStream.mark(MARK_LIMIT);
  }

  @NonNull
  @Override
  public InputStream rewindAndGet() throws IOException {
    bufferedStream.reset();
    return bufferedStream;
  }

  @Override
  public void cleanup() {
    bufferedStream.release();
  }

ResourceTranscoder

ResourceTranscoder是一个接口,作用是对两个Resource<?>进行转换,接受泛型<Z,R>,主要方法是transcode(),一般泛型的接收范围是BitmapDrawablebyte[]等,看一下简单的BitmapBytesTranscoder源码:

public class BitmapBytesTranscoder implements ResourceTranscoder<Bitmap, byte[]> {
  private final Bitmap.CompressFormat compressFormat;
  private final int quality;

  public BitmapBytesTranscoder() {
    this(Bitmap.CompressFormat.JPEG, 100);
  }

  @SuppressWarnings("WeakerAccess")
  public BitmapBytesTranscoder(@NonNull Bitmap.CompressFormat compressFormat, int quality) {
    this.compressFormat = compressFormat;
    this.quality = quality;
  }

  @Nullable
  @Override
  public Resource<byte[]> transcode(@NonNull Resource<Bitmap> toTranscode,
      @NonNull Options options) {
    ByteArrayOutputStream os = new ByteArrayOutputStream();
    toTranscode.get().compress(compressFormat, quality, os);
    toTranscode.recycle();
    return new BytesResource(os.toByteArray());
  }
}

加载/解析 数据转换流程

上面介绍一堆组件和一堆泛型,数据类型的转换到底是怎样?搞明白这一点还得从Rigistry提供的操作方法入手:

Registry提供getModelLoaders()getLoadPath(),我们先从定义方法的泛型来看:

public <Model> List<ModelLoader<Model, ?>> getModelLoaders(@NonNull Model model) {...}

public <Data, TResource, Transcode> LoadPath<Data, TResource, Transcode> getLoadPath(
      @NonNull Class<Data> dataClass, @NonNull Class<TResource> resourceClass,
      @NonNull Class<Transcode> transcodeClass) {...}

getModelLoader()分析

getModelLoaders()入参类型为<Model>,返回类型为<Model,?><Model>具体类型就是我们调用Glide.with().load(model)load()传入的类型,返回类型<?>是我们在Registry中注册的所有符合输入<Model>的类型,比如InputStream或者ByteBuffer

LoadPath()分析

LoadPath()入参类型为<Data, TResource, Transcode>,其中<Data>是在getModelLoaders()返回的类型,例如InputStream或者ByteBuffer<TResource>是待定类型,调用者一般传?,<Transcode>调用Glide.with().as(xxx)as()传入的类型,Glide提供有asBitmap(),asFile(),asGif(),默认是Drawable类型;在调用时<TResource>是待定类型,肯定有逻辑获取它的目标类型,下面分析getLoadPath()方法一看究竟;

  public <Data, TResource, Transcode> LoadPath<Data, TResource, Transcode> getLoadPath(
      @NonNull Class<Data> dataClass, @NonNull Class<TResource> resourceClass,
      @NonNull Class<Transcode> transcodeClass) {
    LoadPath<Data, TResource, Transcode> result =
        loadPathCache.get(dataClass, resourceClass, transcodeClass);
    if (loadPathCache.isEmptyLoadPath(result)) {
      return null;
    } else if (result == null) {
      List<DecodePath<Data, TResource, Transcode>> decodePaths =
          getDecodePaths(dataClass, resourceClass, transcodeClass);
      if (decodePaths.isEmpty()) {
        result = null;
      } else {
        result =
            new LoadPath<>(
                dataClass, resourceClass, transcodeClass, decodePaths, throwableListPool);
      }
      loadPathCache.put(dataClass, resourceClass, transcodeClass, result);
    }
    return result;
  }

LoadPath()方法从loadPathCache获取缓存对象,如果不存在,调用getDecodePaths(),经过判断,创建LoadPath对象,将获取的结果放入LoadPath,最后放入loadPathCache并返回,LoadPath是对Data,TResource,TranscodeList<DecodePath<Data, TResource, Transcode>>的封装,最终的逻辑还是再DecodePath中;

看一下getDecodePaths()方法定义:

private <Data, TResource, Transcode> List<DecodePath<Data, TResource, Transcode>> getDecodePaths(
      @NonNull Class<Data> dataClass, @NonNull Class<TResource> resourceClass,
      @NonNull Class<Transcode> transcodeClass) {
    List<DecodePath<Data, TResource, Transcode>> decodePaths = new ArrayList<>();
     //获取所有dataClass对应的ResourceClasses
    List<Class<TResource>> registeredResourceClasses =
        decoderRegistry.getResourceClasses(dataClass, resourceClass);**代码1
    //遍历registeredResourceClass
    for (Class<TResource> registeredResourceClass : registeredResourceClasses) {
        //获取所有的registeredResourceClass对应的registeredTranscodeClasses
      List<Class<Transcode>> registeredTranscodeClasses =
          transcoderRegistry.getTranscodeClasses(registeredResourceClass, transcodeClass);**代码2
      //遍历registeredTranscodeClasses
      for (Class<Transcode> registeredTranscodeClass : registeredTranscodeClasses) {
        //获取dataClass和registeredResourceClass对应的所有ResourceDecoder
        List<ResourceDecoder<Data, TResource>> decoders =
            decoderRegistry.getDecoders(dataClass, registeredResourceClass);**代码3
         //获取registeredResourceClass和registeredTranscodeClasss对应的所有ResourceTranscoder
        ResourceTranscoder<TResource, Transcode> transcoder =
            transcoderRegistry.get(registeredResourceClass, registeredTranscodeClass);**代码4
        @SuppressWarnings("PMD.AvoidInstantiatingObjectsInLoops")
        //创建DecodePath,把相关信息封装
        DecodePath<Data, TResource, Transcode> path =
            new DecodePath<>(dataClass, registeredResourceClass, registeredTranscodeClass,
                decoders, transcoder, throwableListPool);
        //添加进集合
        decodePaths.add(path);
      }
    }
    //返回集合
    return decodePaths;
  }

为了更清楚的分析代码,我可以将假设泛型的类型为<InputStream,?,Drawable>

我在上面代码中做了标记:代码1通过调用transcoderRegistry.getTranscodeClasses(),返回的类型就是泛型?所未知的具体类型;

代码2通过调用transcoderRegistry.getTranscodeClasses(),返回所有符合条件的registeredTranscodeClasses;

代码3通过调用decoderRegistry.getDecoders()获取符合条件的List<ResourceDecoder>;

代码4通过调用transcoderRegistry.get()获取符合条件的ResourceTranscoder

DecodePath是对Data, TResource, Transcode,decoders,transcoder的封装;

第一层for循环理解 由于<TResource>是入参是未知类型,并不是用户定义的,是Registry模块支持的中间类型,它是靠入参类型<Data>进行筛选,所以就可能有可能有多个匹配;

第二层for循环理解 因为<Transcode>是用户传入,这个泛型是一个已确定类型,通常是Drawable,但是真正注册给transcoderRegistry可能是BitmapDrawable或则BitmapDrawable类型,这一刻还不确定是哪个Drawable,所以在这一步,registry返回给调用者多个;

总结:

加载过程是从getModelLoader()调用,数据从Model->Data;

解析过程是从getLoadPath()调用,中间经过decoder、transcoder,数据类型从Data->TResource->Transcode

写缓存数据转换流程

写缓存过程分为两类,一类是直接将原数据缓存,另一类是将变化后的数据写缓存,他们分别对应的是EncoderResourceEncoder;

Encoder流程

Encoder的使用场景在SourceGenerator.cacheData(dataToCache)方法中,最终通过调用Registry.getSourceEncoder()获取到Encode;

  public <X> Encoder<X> getSourceEncoder(@NonNull X data) throws NoSourceEncoderAvailableException {
    Encoder<X> encoder = encoderRegistry.getEncoder((Class<X>) data.getClass());
    if (encoder != null) {
      return encoder;
    }
    throw new NoSourceEncoderAvailableException(data.getClass());
  }

上一节说过SourceGenerator是对原数据的获取,cacheData()中拿到的 dataToCache一般是加载过程返回的Data,确切的说是InputStream或者ByteBuffer类型,而Encoder最终保存到文件,类型为File,所以Encoder数据是从Data->File的;执行的时机在加载之后,和解析过程并列执行;

ResourceEncoder流程

ResourceEncoder的使用场景是在数据解析完毕后,将处理过的数据进行缓存,调用的地方在DecodeJob.onResourceDecoded()方法中,其最终通过调用Registry.getResultEncoder()获取;

public <X> ResourceEncoder<X> getResultEncoder(@NonNull Resource<X> resource)
      throws NoResultEncoderAvailableException {
    ResourceEncoder<X> resourceEncoder = resourceEncoderRegistry.get(resource.getResourceClass());
    if (resourceEncoder != null) {
      return resourceEncoder;
    }
    throw new NoResultEncoderAvailableException(resource.getResourceClass());
  }

ResourceEncoder数据类型是从Resource<X>->File;执行的时机在解析流程之后;

总结

最后画一张数据简单的数据装换流程图