怎么用
会了。
类
1.任务和线程 2.提交任务的类-任务执行器 3.创建提交任务类的类-任务执行器的工厂类
为什么要弄一个Callable出来?
并发包里的任务Callable(相当于是Runnable)和任务实现类FutureTask(相当于是Thread)。 1.一般使用是Runnable 2.为什么要弄一个Callable出来? A Runnable, however, does not return a result and cannot throw a checked exception.
Runnable不能返回结果。但是Callable可以。
例子 结果 = 线程池.启动一个线程(任务); Future f = 线程池.summit(FutureTask);
返回的结果有什么用?
类的细节?
要做到倒背如流。
Thread类表示线程对象,Runnable表示什么?
表示任务。
怎么用? 使用Runnable的时候,必须把Runnable(即任务)和Thread关联起来,任务才可以被执行。
怎么关联?new Thread(任务)的时候,把任务作为参数,传过去就可以了。
因为设计的时候,Thread类是包含了任务。
为什么要这么设计?解耦线程类本身和任务。两者分别完成自己的功能就可以了: 1.任务 是程序员需要关心的业务功能。 2.线程对象 是虚拟机需要关注的数据,虚拟机需要管理线程对象。
任务是任务,关注的是业务,线程是线程,关注的是操作系统管理的最小运行单元本身,一个任务绑定一个线程,本质上的目的是为了同时处理多个任务。比如,web服务器,同时处理多个任务,即多个请求,那么就是提高了吞吐率。这样的话,每个用户的每次请求也更快了,这就提高了响应速度/处理速度。
工作项目
会了。
网友资料
学习资料
《并发编程实践》专门有1章讲线程池。
源码分析
线程池? 怎么提交任务?怎么执行Thread.start()?
取线程? 1.每次都是新建一个线程 2.没看到从线程池里取一个线程对象?
内部设计 1.线程池执行器 作用,提交任务到线程,启动线程。
2.任务队列 把任务放到队列。而不是立即新建一个线程。这样做的好处是,任务队列只是暂时保存数据,而如果每次来了一个任务都新建一个线程的话,这些新的线程会互相竞争,包括和旧的线程相互竞争,旧的线程本来就没有执行完毕,现在又有新的线程来和它们竞争,导致旧的线程花费时间太久,响应太慢。
3.线程池
任务队列 1.无限大小 链表。
优点,可以无限接受请求/任务。 缺点,可能耗尽硬件资源。
2.有限大小 数组。
优点,可以避免耗尽硬件资源。 缺点,当任务队列已满,如果还有新的任务怎么办?饱和策略。
饱和策略?
任务队列-阻塞队列? 阻塞队列和线程复用之间的关系?
底层原理
线程池是什么?是线程对象的数组吗?每次从数组里取一个,就和数据库连接池一样?
不是。线程池是规定了线程个数的大小,根据线程大小来判断是否需要创建新的线程,具体来说是线程池执行器有个线程计数器(每次创建新的线程,就增加1),根据当前线程池里的线程计数器就可以知道目前已经创建几个线程,拿这个数量和线程池大小比较就可以了:
1.如果已经创建的线程数量比线程池大小要小
创建新的线程,启动新的线程,执行新的任务。即时这个时候,线程池有空闲线程,仍然新建线程。
2.如果要大
先把任务放到任务队列,然后等待线程池的空闲线程,就是当别的任务/线程执行完毕了,空闲出来的线程就去执行任务队列里的任务,当然执行之前需要先从任务队列取一个任务出来。
这就是对线程对象的重复利用!
源码是怎么实现这一点的,就是怎么实现线程对象的复用?
//jdk7-ThreadPollExecutor
/**
* Executes the given task sometime in the future. The task
* may execute in a new thread or in an existing pooled thread.
*
* If the task cannot be submitted for execution, either because this
* executor has been shutdown or because its capacity has been reached,
* the task is handled by the current {@code RejectedExecutionHandler}.
*
* @param command the task to execute
* @throws RejectedExecutionException at discretion of
* {@code RejectedExecutionHandler}, if the task
* cannot be accepted for execution
* @throws NullPointerException if {@code command} is null
*/
public void execute(Runnable command) {
if (command == null)
throw new NullPointerException();
/*
* Proceed in 3 steps:
*
* 1. If fewer than corePoolSize threads are running, try to
* start a new thread with the given command as its first
* task. The call to addWorker atomically checks runState and
* workerCount, and so prevents false alarms that would add
* threads when it shouldn't, by returning false.
*
* 2. If a task can be successfully queued, then we still need
* to double-check whether we should have added a thread
* (because existing ones died since last checking) or that
* the pool shut down since entry into this method. So we
* recheck state and if necessary roll back the enqueuing if
* stopped, or start a new thread if there are none.
*
* 3. If we cannot queue task, then we try to add a new
* thread. If it fails, we know we are shut down or saturated
* and so reject the task.
*/
int c = ctl.get();
if (workerCountOf(c) < corePoolSize) { //如果线程池线程数量未满,那么新建线程并且启动线程
if (addWorker(command, true))
return;
c = ctl.get();
}
if (isRunning(c) && workQueue.offer(command)) { //如果线程池线程数量已满,那么把当前数据(即任务)添加到链表阻塞队列。//阻塞队列里的数据什么时候和在哪里的代码被再次消费呢?
int recheck = ctl.get();
if (! isRunning(recheck) && remove(command))
reject(command);
else if (workerCountOf(recheck) == 0)
addWorker(null, false);
}
else if (!addWorker(command, false))
reject(command);
}
/**
* Checks if a new worker can be added with respect to current
* pool state and the given bound (either core or maximum). If so,
* the worker count is adjusted accordingly, and, if possible, a
* new worker is created and started, running firstTask as its
* first task. This method returns false if the pool is stopped or
* eligible to shut down. It also returns false if the thread
* factory fails to create a thread when asked. If the thread
* creation fails, either due to the thread factory returning
* null, or due to an exception (typically OutOfMemoryError in
* Thread#start), we roll back cleanly.
*
* @param firstTask the task the new thread should run first (or
* null if none). Workers are created with an initial first task
* (in method execute()) to bypass queuing when there are fewer
* than corePoolSize threads (in which case we always start one),
* or when the queue is full (in which case we must bypass queue).
* Initially idle threads are usually created via
* prestartCoreThread or to replace other dying workers.
*
* @param core if true use corePoolSize as bound, else
* maximumPoolSize. (A boolean indicator is used here rather than a
* value to ensure reads of fresh values after checking other pool
* state).
* @return true if successful
*/
private boolean addWorker(Runnable firstTask, boolean core) {
retry:
for (;;) {
int c = ctl.get();
int rs = runStateOf(c);
// Check if queue empty only if necessary.
if (rs >= SHUTDOWN &&
! (rs == SHUTDOWN &&
firstTask == null &&
! workQueue.isEmpty()))
return false;
for (;;) {
int wc = workerCountOf(c);
if (wc >= CAPACITY ||
wc >= (core ? corePoolSize : maximumPoolSize))
return false;
if (compareAndIncrementWorkerCount(c))
break retry;
c = ctl.get(); // Re-read ctl
if (runStateOf(c) != rs)
continue retry;
// else CAS failed due to workerCount change; retry inner loop
}
}
boolean workerStarted = false;
boolean workerAdded = false;
Worker w = null;
try {
final ReentrantLock mainLock = this.mainLock;
w = new Worker(firstTask); //
final Thread t = w.thread;
if (t != null) {
mainLock.lock();
try {
// Recheck while holding lock.
// Back out on ThreadFactory failure or if
// shut down before lock acquired.
int c = ctl.get();
int rs = runStateOf(c);
if (rs < SHUTDOWN ||
(rs == SHUTDOWN && firstTask == null)) {
if (t.isAlive()) // precheck that t is startable
throw new IllegalThreadStateException();
workers.add(w);
int s = workers.size();
if (s > largestPoolSize)
largestPoolSize = s;
workerAdded = true;
}
} finally {
mainLock.unlock();
}
if (workerAdded) {
t.start(); //启动线程,即启动Work线程
workerStarted = true;
}
}
} finally {
if (! workerStarted)
addWorkerFailed(w);
}
return workerStarted;
}
/**
* Class Worker mainly maintains interrupt control state for
* threads running tasks, along with other minor bookkeeping.
* This class opportunistically extends AbstractQueuedSynchronizer
* to simplify acquiring and releasing a lock surrounding each
* task execution. This protects against interrupts that are
* intended to wake up a worker thread waiting for a task from
* instead interrupting a task being run. We implement a simple
* non-reentrant mutual exclusion lock rather than use
* ReentrantLock because we do not want worker tasks to be able to
* reacquire the lock when they invoke pool control methods like
* setCorePoolSize. Additionally, to suppress interrupts until
* the thread actually starts running tasks, we initialize lock
* state to a negative value, and clear it upon start (in
* runWorker).
*/
private final class Worker
extends AbstractQueuedSynchronizer
implements Runnable
{
/**
* This class will never be serialized, but we provide a
* serialVersionUID to suppress a javac warning.
*/
private static final long serialVersionUID = 6138294804551838833L;
/** Thread this worker is running in. Null if factory fails. */
final Thread thread; //当前线程
/** Initial task to run. Possibly null. */
Runnable firstTask; //当前任务
/** Per-thread task counter */
volatile long completedTasks;
/**
* Creates with given first task and thread from ThreadFactory.
* @param firstTask the first task (null if none)
*/
Worker(Runnable firstTask) {
setState(-1); // inhibit interrupts until runWorker
this.firstTask = firstTask; //任务
this.thread = getThreadFactory().newThread(this); //new Worker()时的当前对象work就是this,也就是说当前对象work就是当前线程
}
/** Delegates main run loop to outer runWorker */
public void run() { //启动Workder线程之后,jvm自动调用任务的run()方法。//Worker既包含了线程对象,又包含了任务对象。
runWorker(this);
}
/**
* The default thread factory
*/
static class DefaultThreadFactory implements ThreadFactory {
private static final AtomicInteger poolNumber = new AtomicInteger(1);
private final ThreadGroup group;
private final AtomicInteger threadNumber = new AtomicInteger(1);
private final String namePrefix;
DefaultThreadFactory() {
SecurityManager s = System.getSecurityManager();
group = (s != null) ? s.getThreadGroup() :
Thread.currentThread().getThreadGroup();
namePrefix = "pool-" +
poolNumber.getAndIncrement() +
"-thread-";
}
public Thread newThread(Runnable r) {
Thread t = new Thread(group, r,
namePrefix + threadNumber.getAndIncrement(),
0);
if (t.isDaemon())
t.setDaemon(false);
if (t.getPriority() != Thread.NORM_PRIORITY)
t.setPriority(Thread.NORM_PRIORITY);
return t;
}
}
Worker集合和和任务队列的区别?为什么要搞2个集合? 1.任务队列 纯粹是一个放数据的地方,是一个集合。这也是它唯一的作用。 另外,线程池使用的是阻塞队列,所以除了放数据的作用之外,顾名思义还具备了阻塞功能。而阻塞功能是实现线程复用的一个前提。
/**
* The queue used for holding tasks and handing off to worker
* threads. We do not require that workQueue.poll() returning
* null necessarily means that workQueue.isEmpty(), so rely
* solely on isEmpty to see if the queue is empty (which we must
* do for example when deciding whether to transition from
* SHUTDOWN to TIDYING). This accommodates special-purpose
* queues such as DelayQueues for which poll() is allowed to
* return null even if it may later return non-null when delays
* expire.
*/
private final BlockingQueue<Runnable> workQueue;
2.Worker集合 1)包含了线程对象 线程对象包含的任务,又是Worker本身。因为Worker继承了Runnable。
2)又包含了任务 这个任务才是真正的最后要执行的任务。 而Worker本身这个任务的作用只是为了最终去调用程序员自定义任务。
/**
* Set containing all worker threads in pool. Accessed only when
* holding mainLock.
*/
private final HashSet<Worker> workers = new HashSet<Worker>();
总结 搞2个集合的目的,以及使用了阻塞队列这个数据结构,这2个结合起来就可以实现线程复用的功能, 1.如果线程对象池的线程对象未满,那么新建线程对象,哪怕已有的线程对象是闲置的状态。 这种情况,新建了线程对象,新的任务也是由新建的线程对象来处理。
2.如果线程池已满,那么把任务添加到阻塞队列即可。 这种情况,没有新建线程对象,因为线程池已满,不能再新建线程对象了。 只是把任务添加到阻塞队列。 那么阻塞队列的任务,什么时候被执行?在哪里被执行?
3.线程池的线程对象全部被创建完毕,全部在运行的时候:这些线程对象,会从阻塞队列取数据,而且是循环取数据,不断地消费阻塞队列里的数据/任务。
一个线程是可以处理多个任务的,这就是线程复用的原理!
怎么处理多个任务?循环取任务就可以了。
底层数据结构?阻塞队列。
/**
* Main worker run loop. Repeatedly gets tasks from queue and
* executes them, while coping with a number of issues:
*
* 1. We may start out with an initial task, in which case we
* don't need to get the first one. Otherwise, as long as pool is
* running, we get tasks from getTask. If it returns null then the
* worker exits due to changed pool state or configuration
* parameters. Other exits result from exception throws in
* external code, in which case completedAbruptly holds, which
* usually leads processWorkerExit to replace this thread.
*
* 2. Before running any task, the lock is acquired to prevent
* other pool interrupts while the task is executing, and then we
* ensure that unless pool is stopping, this thread does not have
* its interrupt set.
*
* 3. Each task run is preceded by a call to beforeExecute, which
* might throw an exception, in which case we cause thread to die
* (breaking loop with completedAbruptly true) without processing
* the task.
*
* 4. Assuming beforeExecute completes normally, we run the task,
* gathering any of its thrown exceptions to send to afterExecute.
* We separately handle RuntimeException, Error (both of which the
* specs guarantee that we trap) and arbitrary Throwables.
* Because we cannot rethrow Throwables within Runnable.run, we
* wrap them within Errors on the way out (to the thread's
* UncaughtExceptionHandler). Any thrown exception also
* conservatively causes thread to die.
*
* 5. After task.run completes, we call afterExecute, which may
* also throw an exception, which will also cause thread to
* die. According to JLS Sec 14.20, this exception is the one that
* will be in effect even if task.run throws.
*
* The net effect of the exception mechanics is that afterExecute
* and the thread's UncaughtExceptionHandler have as accurate
* information as we can provide about any problems encountered by
* user code.
*
* @param w the worker
*/
final void runWorker(Worker w) {
Thread wt = Thread.currentThread();
Runnable task = w.firstTask;
w.firstTask = null;
w.unlock(); // allow interrupts
boolean completedAbruptly = true;
try {
while (task != null || (task = getTask()) != null) { //2种请求,1.新的任务不为null:新建线程对象,新的任务由新建线程对象处理——也就是条件判断里的第一个条件task != null 2.新建任务执行完毕之后,被设置为null——所以循环第二次的时候,task已经为null,因为已经消费过了这个任务;接着,这个新建线程继续取阻塞队列里的任务,然后执行第二个任务——这里就体现了线程对象的复用,就是一个线程对象可以处理多个任务。
w.lock();
// If pool is stopping, ensure thread is interrupted;
// if not, ensure thread is not interrupted. This
// requires a recheck in second case to deal with
// shutdownNow race while clearing interrupt
if ((runStateAtLeast(ctl.get(), STOP) ||
(Thread.interrupted() &&
runStateAtLeast(ctl.get(), STOP))) &&
!wt.isInterrupted())
wt.interrupt();
try {
beforeExecute(wt, task);
Throwable thrown = null;
try {
task.run();
} catch (RuntimeException x) {
thrown = x; throw x;
} catch (Error x) {
thrown = x; throw x;
} catch (Throwable x) {
thrown = x; throw new Error(x);
} finally {
afterExecute(task, thrown);
}
} finally {
task = null; //新建任务执行完毕之后,被设置为null;每次取的任务,执行完毕之后,都会被设置为null——然后,循环代码接着继续取下一个任务从阻塞队列。
w.completedTasks++;
w.unlock();
}
}
completedAbruptly = false;
} finally {
processWorkerExit(w, completedAbruptly);
}
}
/**
* Performs blocking or timed wait for a task, depending on
* current configuration settings, or returns null if this worker
* must exit because of any of:
* 1. There are more than maximumPoolSize workers (due to
* a call to setMaximumPoolSize).
* 2. The pool is stopped.
* 3. The pool is shutdown and the queue is empty.
* 4. This worker timed out waiting for a task, and timed-out
* workers are subject to termination (that is,
* {@code allowCoreThreadTimeOut || workerCount > corePoolSize})
* both before and after the timed wait, and if the queue is
* non-empty, this worker is not the last thread in the pool.
*
* @return task, or null if the worker must exit, in which case
* workerCount is decremented
*/
private Runnable getTask() { //从阻塞队列取任务
boolean timedOut = false; // Did the last poll() time out?
for (;;) {
int c = ctl.get();
int rs = runStateOf(c);
// Check if queue empty only if necessary.
if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
decrementWorkerCount();
return null;
}
int wc = workerCountOf(c);
// Are workers subject to culling?
boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
if ((wc > maximumPoolSize || (timed && timedOut))
&& (wc > 1 || workQueue.isEmpty())) {
if (compareAndDecrementWorkerCount(c))
return null;
continue;
}
try {
Runnable r = timed ?
workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
workQueue.take();
if (r != null)
return r;
timedOut = true;
} catch (InterruptedException retry) {
timedOut = false;
}
}
}
Work.run()在哪里调用的? Worker又包含了线程,又包含了任务。 Worker本身也是一个任务,因为它继承了Runnable。把自己作为任务传给自己包含的线程。所以启动Worker.thread时,会调用任务(即Worker本身)的run()方法。Worker.run()方法又调用了runWorker(),即调用真正的任务.run(),所谓真正的任务就是程序员自定义任务。
/**
* Main worker run loop. Repeatedly gets tasks from queue and
* executes them, while coping with a number of issues:
*
* 1. We may start out with an initial task, in which case we
* don't need to get the first one. Otherwise, as long as pool is
* running, we get tasks from getTask. If it returns null then the
* worker exits due to changed pool state or configuration
* parameters. Other exits result from exception throws in
* external code, in which case completedAbruptly holds, which
* usually leads processWorkerExit to replace this thread.
*
* 2. Before running any task, the lock is acquired to prevent
* other pool interrupts while the task is executing, and then we
* ensure that unless pool is stopping, this thread does not have
* its interrupt set.
*
* 3. Each task run is preceded by a call to beforeExecute, which
* might throw an exception, in which case we cause thread to die
* (breaking loop with completedAbruptly true) without processing
* the task.
*
* 4. Assuming beforeExecute completes normally, we run the task,
* gathering any of its thrown exceptions to send to afterExecute.
* We separately handle RuntimeException, Error (both of which the
* specs guarantee that we trap) and arbitrary Throwables.
* Because we cannot rethrow Throwables within Runnable.run, we
* wrap them within Errors on the way out (to the thread's
* UncaughtExceptionHandler). Any thrown exception also
* conservatively causes thread to die.
*
* 5. After task.run completes, we call afterExecute, which may
* also throw an exception, which will also cause thread to
* die. According to JLS Sec 14.20, this exception is the one that
* will be in effect even if task.run throws.
*
* The net effect of the exception mechanics is that afterExecute
* and the thread's UncaughtExceptionHandler have as accurate
* information as we can provide about any problems encountered by
* user code.
*
* @param w the worker
*/
final void runWorker(Worker w) {
Thread wt = Thread.currentThread();
Runnable task = w.firstTask;
w.firstTask = null;
w.unlock(); // allow interrupts
boolean completedAbruptly = true;
try {
while (task != null || (task = getTask()) != null) { //如果当前任务不为null或者任务队列里的数据不为null,那么就执行任务
w.lock();
// If pool is stopping, ensure thread is interrupted;
// if not, ensure thread is not interrupted. This
// requires a recheck in second case to deal with
// shutdownNow race while clearing interrupt
if ((runStateAtLeast(ctl.get(), STOP) ||
(Thread.interrupted() &&
runStateAtLeast(ctl.get(), STOP))) &&
!wt.isInterrupted())
wt.interrupt();
try {
beforeExecute(wt, task);
Throwable thrown = null;
try {
task.run(); //最终,执行真正任务的run()。
} catch (RuntimeException x) {
thrown = x; throw x;
} catch (Error x) {
thrown = x; throw x;
} catch (Throwable x) {
thrown = x; throw new Error(x);
} finally {
afterExecute(task, thrown);
}
} finally {
task = null;
w.completedTasks++;
w.unlock();
}
}
completedAbruptly = false;
} finally {
processWorkerExit(w, completedAbruptly);
}
}
/**
* Performs blocking or timed wait for a task, depending on
* current configuration settings, or returns null if this worker
* must exit because of any of:
* 1. There are more than maximumPoolSize workers (due to
* a call to setMaximumPoolSize).
* 2. The pool is stopped.
* 3. The pool is shutdown and the queue is empty.
* 4. This worker timed out waiting for a task, and timed-out
* workers are subject to termination (that is,
* {@code allowCoreThreadTimeOut || workerCount > corePoolSize})
* both before and after the timed wait, and if the queue is
* non-empty, this worker is not the last thread in the pool.
*
* @return task, or null if the worker must exit, in which case
* workerCount is decremented
*/
private Runnable getTask() {
boolean timedOut = false; // Did the last poll() time out?
for (;;) {
int c = ctl.get();
int rs = runStateOf(c);
// Check if queue empty only if necessary.
if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
decrementWorkerCount();
return null;
}
int wc = workerCountOf(c);
// Are workers subject to culling?
boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
if ((wc > maximumPoolSize || (timed && timedOut))
&& (wc > 1 || workQueue.isEmpty())) {
if (compareAndDecrementWorkerCount(c))
return null;
continue;
}
try {
Runnable r = timed ?
workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) : //
workQueue.take();//阻塞取数据
if (r != null)
return r;
timedOut = true;
} catch (InterruptedException retry) {
timedOut = false;
}
}
}
线程池设置多大比较好?
1.工作-测试环境 个位数。
生产环境?