12 小结:建立开发集和测试集
-
选择作为开发集和测试集的数据,应当与你预期在将来获取并良好处理的数据有着相同的分布,但不需要和训练集数据的分布一致。
-
开发集和测试集的分布应当尽可能一致。
-
为你的团队选择一个单值评估指标进行优化。需要考虑多项目标时,不妨将它们整合到一个表达式里(比如对多个误差指标取平均),或者定义满意度指标和优化指标。
-
机器学习是一个高速迭代的过程:在最终令人满意的方案出现前,你可能要尝试很多想法。
-
拥有开发集、测试集和单值评估指标可以帮你快速评估一个算法,从而加速迭代过程。
-
当你探索一个全新的应用时,尽可能在一周内建立你的开发集、测试集和指标,而在成熟的应用上则可以花费更长的时间。
-
传统的 70% / 30% 训练集/测试集划分对大规模数据并不适用,实际上开发集和测试集的比例会远低于 30%。
-
开发集的规模应当大到能够检测出算法精度的细微改变,但也不用太大;测试集的规模应该大到能够使你对系统的最终性能作出一个充分的估计。
-
当开发集和评估指标不再能给团队一个正确的导向时,就尽快修改它们:(i) 如果你在开发集上过拟合,则获取更多的开发集数据。(ii) 如果开发集和测试集的数据分布和实际关注的数据分布不同,则获取新的开发集和测试集。 (iii) 如果评估指标不能够对最重要的任务目标进行度量,则需要修改评估指标。
敬请期待第13章:
快速构建并迭代你的第一个系统
机器学习训练秘籍已发布章节
英文版最新章节请在这里注册http://www.mlyearning.org/
为了让大家尽快接触到机器学习训练秘籍中文版,我们在最短的时间内组织了翻译工作。若有任何错误,还请包涵。翻译内容仍在持续改进中,如果大家有任何意见和建议,欢迎给我们留言。
欢迎扫码关注我们的公众号!谢谢!