用Python从零开始创建区块链

236 阅读12分钟

本文主要内容翻译自Learn Blockchains by Building One �本文原始链接,转载请注明出处。 作者认为最快的学习区块链的方式是自己创建一个,本文就跟随作者用Python来创建一个区块链。

对数字货币的崛起感到新奇的我们,并且想知道其背后的技术——区块链是怎样实现的。

但是完全搞懂区块链并非易事,我喜欢在实践中学习,通过写代码来学习技术会掌握得更牢固。通过构建一个区块链可以加深对区块链的理解。

准备工作

本文要求读者对Python有基本的理解,能读写基本的Python,并且需要对HTTP请求有基本的了解。

我们知道区块链是由区块的记录构成的不可变、有序的链结构,记录可以是交易、文件或任何你想要的数据,重要的是它们是通过哈希值(hashes)链接起来的。

如果你还不是很了解哈希,可以查看这篇文章

环境准备

环境准备,确保已经安装Python3.6+, pip , Flask, requests 安装方法:

pip install Flask==0.12.2 requests==2.18.4 同时还需要一个HTTP客户端,比如Postman,cURL或其它客户端。

参考源代码(原代码在我翻译的时候,无法运行,我fork了一份,修复了其中的错误,并添加了翻译,感谢star)

开始创建Blockchain

新建一个文件 blockchain.py,本文所有的代码都写在这一个文件中,可以随时参考源代码

Blockchain类

首先创建一个Blockchain类,在构造函数中创建了两个列表,一个用于储存区块链,一个用于储存交易。

以下是Blockchain类的框架:

class Blockchain(object): def init(self): self.chain = [] self.current_transactions = []

def new_block(self):
    # Creates a new Block and adds it to the chain
    pass

def new_transaction(self):
    # Adds a new transaction to the list of transactions
    pass

@staticmethod
def hash(block):
    # Hashes a Block
    pass

@property
def last_block(self):
    # Returns the last Block in the chain
    pass

Blockchain类用来管理链条,它能存储交易,加入新块等,下面我们来进一步完善这些方法。

块结构

每个区块包含属性:索引(index),Unix时间戳(timestamp),交易列表(transactions),工作量证明(稍后解释)以及前一个区块的Hash值。

以下是一个区块的结构:

block = { 'index': 1, 'timestamp': 1506057125.900785, 'transactions': [ { 'sender': "8527147fe1f5426f9dd545de4b27ee00", 'recipient': "a77f5cdfa2934df3954a5c7c7da5df1f", 'amount': 5, } ], 'proof': 324984774000, 'previous_hash': "2cf24dba5fb0a30e26e83b2ac5b9e29e1b161e5c1fa7425e73043362938b9824" } 到这里,区块链的概念就清楚了,每个新的区块都包含上一个区块的Hash,这是关键的一点,它保障了区块链不可变性。如果攻击者破坏了前面的某个区块,那么后面所有区块的Hash都会变得不正确。不理解的话,慢慢消化,可参考{% post_link whatbc 区块链记账原理 %}

加入交易

接下来我们需要添加一个交易,来完善下new_transaction方法

class Blockchain(object): ...

def new_transaction(self, sender, recipient, amount):
    """
    生成新交易信息,信息将加入到下一个待挖的区块中
    :param sender: <str> Address of the Sender
    :param recipient: <str> Address of the Recipient
    :param amount: <int> Amount
    :return: <int> The index of the Block that will hold this transaction
    """

    self.current_transactions.append({
        'sender': sender,
        'recipient': recipient,
        'amount': amount,
    })

    return self.last_block['index'] + 1

方法向列表中添加一个交易记录,并返回该记录将被添加到的区块(下一个待挖掘的区块)的索引,等下在用户提交交易时会有用。

创建新块

当Blockchain实例化后,我们需要构造一个创世块(没有前区块的第一个区块),并且给它加上一个工作量证明。 每个区块都需要经过工作量证明,俗称挖矿,稍后会继续讲解。

为了构造创世块,我们还需要完善new_block(), new_transaction() 和hash() 方法:

import hashlib import json from time import time

class Blockchain(object): def init(self): self.current_transactions = [] self.chain = []

    # Create the genesis block
    self.new_block(previous_hash=1, proof=100)

def new_block(self, proof, previous_hash=None):
    """
    生成新块
    :param proof: <int> The proof given by the Proof of Work algorithm
    :param previous_hash: (Optional) <str> Hash of previous Block
    :return: <dict> New Block
    """

    block = {
        'index': len(self.chain) + 1,
        'timestamp': time(),
        'transactions': self.current_transactions,
        'proof': proof,
        'previous_hash': previous_hash or self.hash(self.chain[-1]),
    }

    # Reset the current list of transactions
    self.current_transactions = []

    self.chain.append(block)
    return block

def new_transaction(self, sender, recipient, amount):
    """
    生成新交易信息,信息将加入到下一个待挖的区块中
    :param sender: <str> Address of the Sender
    :param recipient: <str> Address of the Recipient
    :param amount: <int> Amount
    :return: <int> The index of the Block that will hold this transaction
    """
    self.current_transactions.append({
        'sender': sender,
        'recipient': recipient,
        'amount': amount,
    })

    return self.last_block['index'] + 1

@property
def last_block(self):
    return self.chain[-1]

@staticmethod
def hash(block):
    """
    生成块的 SHA-256 hash值
    :param block: <dict> Block
    :return: <str>
    """

    # We must make sure that the Dictionary is Ordered, or we'll have inconsistent hashes
    block_string = json.dumps(block, sort_keys=True).encode()
    return hashlib.sha256(block_string).hexdigest()

通过上面的代码和注释可以对区块链有直观的了解,接下来我们看看区块是怎么挖出来的。

理解工作量证明

新的区块依赖工作量证明算法(PoW)来构造。PoW的目标是找出一个符合特定条件的数字,这个数字很难计算出来,但容易验证。这就是工作量证明的核心思想。

为了方便理解,举个例子:

假设一个整数 x 乘以另一个整数 y 的积的 Hash 值必须以 0 结尾,即 hash(x * y) = ac23dc...0。设变量 x = 5,求 y 的值?

用Python实现如下:

from hashlib import sha256 x = 5 y = 0 # y未知 while sha256(f'{x*y}'.encode()).hexdigest()[-1] != "0": y += 1 print(f'The solution is y = {y}') 结果是y=21. 因为:

hash(5 * 21) = 1253e9373e...5e3600155e860 在比特币中,使用称为Hashcash的工作量证明算法,它和上面的问题很类似。矿工们为了争夺创建区块的权利而争相计算结果。通常,计算难度与目标字符串需要满足的特定字符的数量成正比,矿工算出结果后,会获得比特币奖励。 当然,在网络上非常容易验证这个结果。

实现工作量证明

让我们来实现一个相似PoW算法,规则是:寻找一个数 p,使得它与前一个区块的 proof 拼接成的字符串的 Hash 值以 4 个零开头。

import hashlib import json

from time import time from uuid import uuid4

class Blockchain(object): ...

def proof_of_work(self, last_proof):
    """
    简单的工作量证明:
     - 查找一个 p' 使得 hash(pp') 以4个0开头
     - p 是上一个块的证明,  p' 是当前的证明
    :param last_proof: <int>
    :return: <int>
    """

    proof = 0
    while self.valid_proof(last_proof, proof) is False:
        proof += 1

    return proof

@staticmethod
def valid_proof(last_proof, proof):
    """
    验证证明: 是否hash(last_proof, proof)以4个0开头?
    :param last_proof: <int> Previous Proof
    :param proof: <int> Current Proof
    :return: <bool> True if correct, False if not.
    """

    guess = f'{last_proof}{proof}'.encode()
    guess_hash = hashlib.sha256(guess).hexdigest()
    return guess_hash[:4] == "0000"

衡量算法复杂度的办法是修改零开头的个数。使用4个来用于演示,你会发现多一个零都会大大增加计算出结果所需的时间。

现在Blockchain类基本已经完成了,接下来使用HTTP requests来进行交互。

Blockchain作为API接口

我们将使用Python Flask框架,这是一个轻量Web应用框架,它方便将网络请求映射到 Python函数,现在我们来让Blockchain运行在基于Flask web上。

我们将创建三个接口:

/transactions/new 创建一个交易并添加到区块 /mine 告诉服务器去挖掘新的区块 /chain 返回整个区块链 创建节点

我们的“Flask服务器”将扮演区块链网络中的一个节点。我们先添加一些框架代码:

import hashlib import json from textwrap import dedent from time import time from uuid import uuid4

from flask import Flask

class Blockchain(object): ...

Instantiate our Node

app = Flask(name)

Generate a globally unique address for this node

node_identifier = str(uuid4()).replace('-', '')

Instantiate the Blockchain

blockchain = Blockchain()

@app.route('/mine', methods=['GET']) def mine(): return "We'll mine a new Block"

@app.route('/transactions/new', methods=['POST']) def new_transaction(): return "We'll add a new transaction"

@app.route('/chain', methods=['GET']) def full_chain(): response = { 'chain': blockchain.chain, 'length': len(blockchain.chain), } return jsonify(response), 200

if name == 'main': app.run(host='0.0.0.0', port=5000) 简单的说明一下以上代码: 第15行: 创建一个节点. 第18行: 为节点创建一个随机的名字. 第21行: 实例Blockchain类. 第24–26行: 创建/mine GET接口。 第28–30行: 创建/transactions/new POST接口,可以给接口发送交易数据. 第32–38行: 创建 /chain 接口, 返回整个区块链。 第40–41行: 服务运行在端口5000上.

发送交易

发送到节点的交易数据结构如下:

{ "sender": "my address", "recipient": "someone else's address", "amount": 5 } 之前已经有添加交易的方法,基于接口来添加交易就很简单了

import hashlib import json from textwrap import dedent from time import time from uuid import uuid4

from flask import Flask, jsonify, request

...

@app.route('/transactions/new', methods=['POST']) def new_transaction(): values = request.get_json()

# Check that the required fields are in the POST'ed data
required = ['sender', 'recipient', 'amount']
if not all(k in values for k in required):
    return 'Missing values', 400

# Create a new Transaction
index = blockchain.new_transaction(values['sender'], values['recipient'], values['amount'])

response = {'message': f'Transaction will be added to Block {index}'}
return jsonify(response), 201

挖矿

挖矿正是神奇所在,它很简单,做了一下三件事:

计算工作量证明PoW 通过新增一个交易授予矿工(自己)一个币 构造新区块并将其添加到链中 import hashlib import json

from time import time from uuid import uuid4

from flask import Flask, jsonify, request

...

@app.route('/mine', methods=['GET']) def mine(): # We run the proof of work algorithm to get the next proof... last_block = blockchain.last_block last_proof = last_block['proof'] proof = blockchain.proof_of_work(last_proof)

# 给工作量证明的节点提供奖励.
# 发送者为 "0" 表明是新挖出的币
blockchain.new_transaction(
    sender="0",
    recipient=node_identifier,
    amount=1,
)

# Forge the new Block by adding it to the chain
block = blockchain.new_block(proof)

response = {
    'message': "New Block Forged",
    'index': block['index'],
    'transactions': block['transactions'],
    'proof': block['proof'],
    'previous_hash': block['previous_hash'],
}
return jsonify(response), 200

注意交易的接收者是我们自己的服务器节点,我们做的大部分工作都只是围绕Blockchain类方法进行交互。到此,我们的区块链就算完成了,我们来实际运行下

运行区块链

你可以使用cURL 或Postman 去和API进行交互

启动server:

$ python blockchain.py

  • Runing on http://127.0.0.1:5000/ (Press CTRL+C to quit) 让我们通过请求 http://localhost:5000/mine 来进行挖矿

用Postman请求挖矿

通过post请求,添加一个新交易

用Postman请求挖矿

如果不是使用Postman,则用一下的cURL语句也是一样的:

$ curl -X POST -H "Content-Type: application/json" -d '{ "sender": "d4ee26eee15148ee92c6cd394edd974e", "recipient": "someone-other-address", "amount": 5 }' "http://localhost:5000/transactions/new" 在挖了两次矿之后,就有3个块了,通过请求 http://localhost:5000/chain 可以得到所有的块信息。

{ "chain": [ { "index": 1, "previous_hash": 1, "proof": 100, "timestamp": 1506280650.770839, "transactions": [] }, { "index": 2, "previous_hash": "c099bc...bfb7", "proof": 35293, "timestamp": 1506280664.717925, "transactions": [ { "amount": 1, "recipient": "8bbcb347e0634905b0cac7955bae152b", "sender": "0" } ] }, { "index": 3, "previous_hash": "eff91a...10f2", "proof": 35089, "timestamp": 1506280666.1086972, "transactions": [ { "amount": 1, "recipient": "8bbcb347e0634905b0cac7955bae152b", "sender": "0" } ] } ], "length": 3 } 一致性(共识)

我们已经有了一个基本的区块链可以接受交易和挖矿。但是区块链系统应该是分布式的。既然是分布式的,那么我们究竟拿什么保证所有节点有同样的链呢?这就是一致性问题,我们要想在网络上有多个节点,就必须实现一个一致性的算法。

注册节点

在实现一致性算法之前,我们需要找到一种方式让一个节点知道它相邻的节点。每个节点都需要保存一份包含网络中其它节点的记录。因此让我们新增几个接口:

/nodes/register 接收URL形式的新节点列表 /nodes/resolve 执行一致性算法,解决任何冲突,确保节点拥有正确的链 我们修改下Blockchain的init函数并提供一个注册节点方法:

... from urllib.parse import urlparse ...

class Blockchain(object): def init(self): ... self.nodes = set() ...

def register_node(self, address):
    """
    Add a new node to the list of nodes
    :param address: <str> Address of node. Eg. 'http://192.168.0.5:5000'
    :return: None
    """

    parsed_url = urlparse(address)
    self.nodes.add(parsed_url.netloc)

我们用 set 来储存节点,这是一种避免重复添加节点的简单方法。

实现共识算法

前面提到,冲突是指不同的节点拥有不同的链,为了解决这个问题,规定最长的、有效的链才是最终的链,换句话说,网络中有效最长链才是实际的链。

我们使用一下的算法,来达到网络中的共识

... import requests

class Blockchain(object) ...

def valid_chain(self, chain):
    """
    Determine if a given blockchain is valid
    :param chain: <list> A blockchain
    :return: <bool> True if valid, False if not
    """

    last_block = chain[0]
    current_index = 1

    while current_index < len(chain):
        block = chain[current_index]
        print(f'{last_block}')
        print(f'{block}')
        print("\n-----------\n")
        # Check that the hash of the block is correct
        if block['previous_hash'] != self.hash(last_block):
            return False

        # Check that the Proof of Work is correct
        if not self.valid_proof(last_block['proof'], block['proof']):
            return False

        last_block = block
        current_index += 1

    return True

def resolve_conflicts(self):
    """
    共识算法解决冲突
    使用网络中最长的链.
    :return: <bool> True 如果链被取代, 否则为False
    """

    neighbours = self.nodes
    new_chain = None

    # We're only looking for chains longer than ours
    max_length = len(self.chain)

    # Grab and verify the chains from all the nodes in our network
    for node in neighbours:
        response = requests.get(f'http://{node}/chain')

        if response.status_code == 200:
            length = response.json()['length']
            chain = response.json()['chain']

            # Check if the length is longer and the chain is valid
            if length > max_length and self.valid_chain(chain):
                max_length = length
                new_chain = chain

    # Replace our chain if we discovered a new, valid chain longer than ours
    if new_chain:
        self.chain = new_chain
        return True

    return False

第一个方法 valid_chain() 用来检查是否是有效链,遍历每个块验证hash和proof.

第2个方法 resolve_conflicts() 用来解决冲突,遍历所有的邻居节点,并用上一个方法检查链的有效性, ** 如果发现有效更长链,就替换掉自己的链 **

让我们添加两个路由,一个用来注册节点,一个用来解决冲突。

@app.route('/nodes/register', methods=['POST']) def register_nodes(): values = request.get_json()

nodes = values.get('nodes')
if nodes is None:
    return "Error: Please supply a valid list of nodes", 400

for node in nodes:
    blockchain.register_node(node)

response = {
    'message': 'New nodes have been added',
    'total_nodes': list(blockchain.nodes),
}
return jsonify(response), 201

@app.route('/nodes/resolve', methods=['GET']) def consensus(): replaced = blockchain.resolve_conflicts()

if replaced:
    response = {
        'message': 'Our chain was replaced',
        'new_chain': blockchain.chain
    }
else:
    response = {
        'message': 'Our chain is authoritative',
        'chain': blockchain.chain
    }

return jsonify(response), 200

你可以在不同的机器运行节点,或在一台机机开启不同的网络端口来模拟多节点的网络,这里在同一台机器开启不同的端口演示,在不同的终端运行一下命令,就启动了两个节点:http://localhost:5000 和 http://localhost:5001

pipenv run python blockchain.py pipenv run python blockchain.py -p 5001 注册新节点

然后在节点2上挖两个块,确保是更长的链,然后在节点1上访问接口/nodes/resolve ,这时节点1的链会通过共识算法被节点2的链取代。

共识算法解决冲突

好啦,你可以邀请朋友们一起来测试你的区块链

☛ 深入浅出区块链 - 系统学习区块链,打造最好的区块链技术博客。 我的知识星球为各位解答区块链技术问题,欢迎加入讨论。

☛ 我的知识星球为各位解答区块链技术问题,欢迎加入讨论。

☛ 关注公众号“深入浅出区块链技术”第一时间获取区块链技术信息。