Java集合之ConcurrentHashMap源码浅析

3,091 阅读13分钟

上文中结尾处,我们说到了现在很少用Hashtable,那么在需要线程安全的场景中,我们如何保持同步呢,这就是本文的重点:ConcurrentHashMap(JDK1.7)。ConcurrentHashMap比HashMap以及Hashtable复杂多了,其内部采用了锁分段技术用以提高并发存取效率。我们看一下测试代码:

代码清单1:

import java.util.HashMap;
import java.util.Hashtable;
import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;

public class CurrentHashMapTest {
    private static  ConcurrentHashMap<String,String> concurrentHashMap=new ConcurrentHashMap<>();
    private static Hashtable<String,String> hashtable=new Hashtable<>();
    private static HashMap<String,String> hashMap=new HashMap<>();

    public static void main(String[] args){


        testConcurrentHashMapThreadSafe();
        System.out.println(concurrentHashMap.size()+"last:"+concurrentHashMap.get("concurrentHashMap9999"));
        testHashtableThreadSafe();
        System.out.println(hashtable.size()+"last:"+hashtable.get("hashtable9999"));
        testHashMapThreadSafe();
        System.out.println(hashMap.size()+"last:"+hashMap.get("hashmap9999"));
        System.out.println("test end");
    }
    public static void  testConcurrentHashMapThreadSafe(){
        long startTime=System.currentTimeMillis();
        for (int i=0;i<100000;i++){
            new ConcurrentThread(i,"concurrentHashMap",concurrentHashMap).start();

        }
        long endTime=System.currentTimeMillis();
        System.out.println("ConcurrentHashMap take time:"+(endTime-startTime));

    }
    public static void testHashtableThreadSafe(){
        long startTime=System.currentTimeMillis();
        for (int i=0;i<100000;i++){
            new ConcurrentHashTableThread(i,"hashtable",hashtable).start();

        }
        long endTime=System.currentTimeMillis();
        System.out.println("Hashtable take time:"+(endTime-startTime));
    }
    public static void testHashMapThreadSafe(){System.out.println("enter test HashMap");
        long startTime=System.currentTimeMillis();
        for (int i=0;i<100000;i++){
            new ConcurrentHashMapThread(i,"hashmap",hashMap).start();

        }
        long endTime=System.currentTimeMillis();
        System.out.println(" HashMap take time:"+(endTime-startTime));
    }
}
class ConcurrentThread extends Thread{
    public int i;
    public String name;
    private ConcurrentHashMap<String,String> map;
    public ConcurrentThread(int i,String name,ConcurrentHashMap<String,String> map){

        this.i=i;
        this.name=name;
        this.map=map;
    }

    @Override
    public void run() {
        super.run();
        map.put(name+i,i+"");
    }
}
class ConcurrentHashTableThread extends Thread{
    public int i;
    public String name;
    private Hashtable<String,String> map;
    public ConcurrentHashTableThread(int i,String name,Hashtable<String,String> map){

        this.i=i;
        this.name=name;
        this.map=map;
    }

    @Override
    public void run() {
        super.run();
        map.put(name+i,i+"");
    }
}
class ConcurrentHashMapThread extends Thread{
    public int i;
    public String name;
    private HashMap<String,String>  map;
    public ConcurrentHashMapThread(int i,String name,HashMap<String,String> map){

        this.i=i;
        this.name=name;
        this.map=map;
    }

    @Override
    public void run() {
        super.run();
        map.put(name+i,i+"");
    }
}

上面的代码输出结果(代码运行环境:Ubuntu14.04+idea+jdk1.7):
ConcurrentHashMap take time:3522
100000last:9999
Hashtable take time:3674
100000last:9999
enter test HashMap
HashMap take time:1105168
99945last:9999
test end

从代码输出结果上可以看出ConcurrentHashMap的效率明显要比Hashtable要高效,而HashMap是不安全的。
先说一下ConcurrentHashMap的内部结构,如下图所示:

ConcurrentHashMap的数据结构
ConcurrentHashMap的数据结构

按照以前的风格,我们看下ConcurrentHashMap的构造函数,如代码清单2:

 static final int DEFAULT_INITIAL_CAPACITY = 16;//table数组的默认长度,这个和HashMap是一样的
    static final float DEFAULT_LOAD_FACTOR = 0.75f;//加载因子

    static final int DEFAULT_CONCURRENCY_LEVEL = 16;//并发级别


    static final int MAXIMUM_CAPACITY = 1 << 30;//最大容量,这里可以看到DEFAULT_INITIAL_CAPACITY、DEFAULT_LOAD_FACTOR、MAXIMUM_CAPACITY,都是和HashMap相应字段的值是相同的。


    static final int MIN_SEGMENT_TABLE_CAPACITY = 2;//段组的最小长度,这里最小值为2的原因是,如果小于2的话(即为1),就没有锁分段的意义了,就和Hashtable一样了,不能两个线程同时并发存和取数据了。


    static final int MAX_SEGMENTS = 1 << 16; //段组的最大长度

    static final int RETRIES_BEFORE_LOCK = 2;//

    final int segmentMask;//地位掩码

    final int segmentShift;//段偏移量

    final Segment<K,V>[] segments;//段组

    transient Set<K> keySet;
    transient Set<Map.Entry<K,V>> entrySet;
    transient Collection<V> values;
public ConcurrentHashMap(int initialCapacity,
                             float loadFactor, int concurrencyLevel) {
        if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
            throw new IllegalArgumentException();
        if (concurrencyLevel > MAX_SEGMENTS)
            concurrencyLevel = MAX_SEGMENTS;
        // Find power-of-two sizes best matching arguments
        int sshift = 0;//左移次数
        int ssize = 1;//经过计算得到段组的长度
        while (ssize < concurrencyLevel) {//我们在阅读源码时,碰到这类代码,我们可以假设输入值,以便更好的理解代码的含义。
            ++sshift;
            ssize <<= 1;//sszie的值为2的sshift幂
        }
        this.segmentShift = 32 - sshift;//
        this.segmentMask = ssize - 1;//低位掩码,sszie为2的指数,则segmentMask的低位全是1.
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        int c = initialCapacity / ssize;
        if (c * ssize < initialCapacity)
            ++c;
        int cap = MIN_SEGMENT_TABLE_CAPACITY;
        while (cap < c)//cap的值是2的指数,同时计算之后也是table数组的容量。
            cap <<= 1;
        // create segments and segments[0]
        Segment<K,V> s0 =
            new Segment<K,V>(loadFactor, (int)(cap * loadFactor),
                             (HashEntry<K,V>[])new HashEntry[cap]);
        Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];//创建段组
        UNSAFE.putOrderedObject(ss, SBASE, s0); // 利用Unsafe将s0放在SBASE放入位置
        this.segments = ss;
    }


    public ConcurrentHashMap(int initialCapacity, float loadFactor) {
        this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL);
    }


    public ConcurrentHashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
    }


    public ConcurrentHashMap() {
        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
    }


    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
        this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
                      DEFAULT_INITIAL_CAPACITY),
             DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
        putAll(m);
    }

代码清单2中的34~41行,主要是为了计算segmentShift与segmentMask的值,下面举个两个计算过程的例子:

这里写图片描述
这里写图片描述

看了上面的两组运行数据,我们可以知道segmentShift以及segmentMask的值是由concurrentLevel决定的,这几个变量意义在代码注释里都有说明,这里就不进行阐述了。

我们创建ConcurrentHashMap对象的目的就是为了使用,于是我们就来到了put方法这里,如代码清单3

代码清单3

public V put(K key, V value) {
        Segment<K,V> s;
        if (value == null)
            throw new NullPointerException();//ConcurrentHashMap也不能接收null的键值对的,key和value都不能为Null
        int hash = hash(key);//计算哈希值
        int j = (hash >>> segmentShift) & segmentMask;//计算段组的索引,(hash>>>segmentShift)保留哈希值的高位将其结果与segmentMask与是为了求段组下标。
        if ((s = (Segment<K,V>)UNSAFE.getObject          // nonvolatile; recheck
             (segments, (j << SSHIFT) + SBASE)) == null) //取出(j<<SSHIFT)+SBASE内存偏移处的对象,如果为空,则创建。
            s = ensureSegment(j);
        return s.put(key, hash, value, false);//具体的put数据的操作由segment对象来完成。
    }
private int hash(Object k) {//这个hash函数的作用就是为了对key的hashcode的原始值进行再次处理,以减少碰撞。
        int h = hashSeed;

        if ((0 != h) && (k instanceof String)) {
            return sun.misc.Hashing.stringHash32((String) k);
        }

        h ^= k.hashCode();

        // Spread bits to regularize both segment and index locations,
        // using variant of single-word Wang/Jenkins hash.
        h += (h <<  15) ^ 0xffffcd7d;
        h ^= (h >>> 10);
        h += (h <<   3);
        h ^= (h >>>  6);
        h += (h <<   2) + (h << 14);
        return h ^ (h >>> 16);
    }
 private Segment<K,V> ensureSegment(int k) {
        final Segment<K,V>[] ss = this.segments;
        long u = (k << SSHIFT) + SBASE; //内存地址
        Segment<K,V> seg;
        if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) {//如果内存偏移处没有值,使用ss[0]元素为原型。
            Segment<K,V> proto = ss[0]; // use segment 0 as prototype
            int cap = proto.table.length;//复制容量
            float lf = proto.loadFactor;//复制加载因子
            int threshold = (int)(cap * lf);//阀值
            HashEntry<K,V>[] tab = (HashEntry<K,V>[])new HashEntry[cap];
            if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
                == null) { // 再次检查是否为null
                Segment<K,V> s = new Segment<K,V>(lf, threshold, tab);//创建Segment对象
                while ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
                       == null) {//循环检查u地址偏移处的对象是否为null
                    if (UNSAFE.compareAndSwapObject(ss, u, null, seg = s))//如果赋值成功则跳出循环,
                        break;
                }
            }
        }
        return seg;//最终返回此次创建的Segment对象或者u处的Segment对象。
    }
 // Unsafe mechanics
    private static final sun.misc.Unsafe UNSAFE;
    private static final long SBASE;
    private static final int SSHIFT;//有多少个1位
    private static final long TBASE;
    private static final int TSHIFT;//有多少个1位
    private static final long HASHSEED_OFFSET;
    private static final long SEGSHIFT_OFFSET;
    private static final long SEGMASK_OFFSET;
    private static final long SEGMENTS_OFFSET;

    static {
        int ss, ts;
        try {
            UNSAFE = sun.misc.Unsafe.getUnsafe();
            Class tc = HashEntry[].class;
            Class sc = Segment[].class;
            TBASE = UNSAFE.arrayBaseOffset(tc);//table组的对象头的偏移量
            SBASE = UNSAFE.arrayBaseOffset(sc);//段组的对象头的偏移量
            ts = UNSAFE.arrayIndexScale(tc);//单个HashEntry的大小,
            ss = UNSAFE.arrayIndexScale(sc);//单个Segment的大小
            HASHSEED_OFFSET = UNSAFE.objectFieldOffset(
                ConcurrentHashMap.class.getDeclaredField("hashSeed"));//hashSeed的内存地址
            SEGSHIFT_OFFSET = UNSAFE.objectFieldOffset(
                ConcurrentHashMap.class.getDeclaredField("segmentShift"));//segmentShift的内存地址
            SEGMASK_OFFSET = UNSAFE.objectFieldOffset(
                ConcurrentHashMap.class.getDeclaredField("segmentMask"));//segmentMask的内存地址
            SEGMENTS_OFFSET = UNSAFE.objectFieldOffset(
                ConcurrentHashMap.class.getDeclaredField("segments"));//segment的起始地址
        } catch (Exception e) {
            throw new Error(e);
        }
        if ((ss & (ss-1)) != 0 || (ts & (ts-1)) != 0)//这里可以看到对于ss以及ts的要求也是2的指数值。
            throw new Error("data type scale not a power of two");
        SSHIFT = 31 - Integer.numberOfLeadingZeros(ss);//numberOfLeadingZeros是代表一个int型的二进制值代表数值的最高位为1的之前有多少个0位。也就是说SSHIFT与TSHIFT代表数据的有效信息占用多少位。
        TSHIFT = 31 - Integer.numberOfLeadingZeros(ts);
    }

通过代码清单3我们知道了ConcurrentHashMap的put操作是由Segment来完成的,下面我们继续往下挖,看代码清单4

代码清单4

static final class Segment<K,V> extends ReentrantLock implements Serializable {//继承ReetrantLock可重入锁


        private static final long serialVersionUID = 2249069246763182397L;


        static final int MAX_SCAN_RETRIES =
            Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;

        transient volatile HashEntry<K,V>[] table;//表组

        transient int count;//表的长度

        transient int modCount;//修改次数

        transient int threshold;//阀值


        final float loadFactor;//负载因子

        Segment(float lf, int threshold, HashEntry<K,V>[] tab) {
            this.loadFactor = lf;
            this.threshold = threshold;
            this.table = tab;
        }

        final V put(K key, int hash, V value, boolean onlyIfAbsent) {//put操作
            HashEntry<K,V> node = tryLock() ? null :
                scanAndLockForPut(key, hash, value);//保证能够获取到段锁,只有key不在该段内,node才不为null,其余情况node为null
            V oldValue;
            try {
                HashEntry<K,V>[] tab = table;
                int index = (tab.length - 1) & hash;//计算table数组的索引
                HashEntry<K,V> first = entryAt(tab, index);
                for (HashEntry<K,V> e = first;;) {
                    if (e != null) {//循环遍历链表,如果没有找到e=null然后跳转至else的分支代码中。
                        K k;
                        if ((k = e.key) == key ||
                            (e.hash == hash && key.equals(k))) {
                            oldValue = e.value;
                            if (!onlyIfAbsent) {
                                e.value = value;
                                ++modCount;
                            }
                            break;
                        }
                        e = e.next;
                    }
                    else {
                        if (node != null)
                            node.setNext(first);//头插法
                        else
                            node = new HashEntry<K,V>(hash, key, value, first);//头插法
                        int c = count + 1;
                        if (c > threshold && tab.length < MAXIMUM_CAPACITY)//扩容处理
                            rehash(node);
                        else
                            setEntryAt(tab, index, node);
                        ++modCount;
                        count = c;
                        oldValue = null;
                        break;
                    }
                }
            } finally {
                unlock();
            }
            return oldValue;
        }


        @SuppressWarnings("unchecked")
        private void rehash(HashEntry<K,V> node) {//这个函数的理解还是不容易的。
            HashEntry<K,V>[] oldTable = table;
            int oldCapacity = oldTable.length;
            int newCapacity = oldCapacity << 1;//扩容方式为old*2.
            threshold = (int)(newCapacity * loadFactor);//新的阀值
            HashEntry<K,V>[] newTable =
                (HashEntry<K,V>[]) new HashEntry[newCapacity];
            int sizeMask = newCapacity - 1;
            for (int i = 0; i < oldCapacity ; i++) {
                HashEntry<K,V> e = oldTable[i];//遍历table数组,进而遍历单链表
                if (e != null) {
                    HashEntry<K,V> next = e.next;
                    int idx = e.hash & sizeMask;
                    if (next == null)   //  Single node on list
                        newTable[idx] = e;
                    else { // Reuse consecutive sequence at same slot
                        HashEntry<K,V> lastRun = e;
                        int lastIdx = idx;
                        for (HashEntry<K,V> last = next;last != null;last = last.next) {//遍历单链表
                            int k = last.hash & sizeMask;
                            if (k != lastIdx) {
                                lastIdx = k;
                                lastRun = last;
                            }
                        }
                        newTable[lastIdx] = lastRun;
                        // Clone remaining nodes
                        for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
                            V v = p.value;
                            int h = p.hash;
                            int k = h & sizeMask;
                            HashEntry<K,V> n = newTable[k];
                            newTable[k] = new HashEntry<K,V>(h, p.key, v, n);
                        }
                    }
                }
            }
            int nodeIndex = node.hash & sizeMask; // add the new node
            node.setNext(newTable[nodeIndex]);
            newTable[nodeIndex] = node;
            table = newTable;
        }

        private HashEntry<K,V> scanAndLockForPut(K key, int hash, V value) {
            HashEntry<K,V> first = entryForHash(this, hash);//根据hash值找到table的数组元素
            HashEntry<K,V> e = first;
            HashEntry<K,V> node = null;
            int retries = -1; // 用来定位节点,如果为0则定位到包含key的节点
            while (!tryLock()) {//循环检测锁,如果当前线程已经获取到锁,则跳出循环。
                HashEntry<K,V> f; // to recheck first below
                if (retries < 0) {//检索key的节点
                    if (e == null) {
                        if (node == null) // speculatively create node
                            node = new HashEntry<K,V>(hash, key, value, null);
                        retries = 0;
                    }
                    else if (key.equals(e.key))
                        retries = 0;
                    else
                        e = e.next;
                }
                else if (++retries > MAX_SCAN_RETRIES) {
                    lock();
                    break;
                }
                else if ((retries & 1) == 0 &&
                         (f = entryForHash(this, hash)) != first) {
                    e = first = f; // re-traverse if entry changed
                    retries = -1;
                }
            }
            return node;
        }

        private void scanAndLock(Object key, int hash) {
            // similar to but simpler than scanAndLockForPut
            HashEntry<K,V> first = entryForHash(this, hash);
            HashEntry<K,V> e = first;
            int retries = -1;
            while (!tryLock()) {
                HashEntry<K,V> f;
                if (retries < 0) {
                    if (e == null || key.equals(e.key))
                        retries = 0;
                    else
                        e = e.next;
                }
                else if (++retries > MAX_SCAN_RETRIES) {
                    lock();
                    break;
                }
                else if ((retries & 1) == 0 &&
                         (f = entryForHash(this, hash)) != first) {
                    e = first = f;
                    retries = -1;
                }
            }
        }

        final V remove(Object key, int hash, Object value) {
            if (!tryLock())
                scanAndLock(key, hash);
            V oldValue = null;
            try {
                HashEntry<K,V>[] tab = table;
                int index = (tab.length - 1) & hash;
                HashEntry<K,V> e = entryAt(tab, index);
                HashEntry<K,V> pred = null;
                while (e != null) {
                    K k;
                    HashEntry<K,V> next = e.next;
                    if ((k = e.key) == key ||
                        (e.hash == hash && key.equals(k))) {
                        V v = e.value;
                        if (value == null || value == v || value.equals(v)) {
                            if (pred == null)
                                setEntryAt(tab, index, next);
                            else
                                pred.setNext(next);
                            ++modCount;
                            --count;
                            oldValue = v;
                        }
                        break;
                    }
                    pred = e;
                    e = next;
                }
            } finally {
                unlock();
            }
            return oldValue;
        }

        final boolean replace(K key, int hash, V oldValue, V newValue) {
            if (!tryLock())
                scanAndLock(key, hash);
            boolean replaced = false;
            try {
                HashEntry<K,V> e;
                for (e = entryForHash(this, hash); e != null; e = e.next) {
                    K k;
                    if ((k = e.key) == key ||
                        (e.hash == hash && key.equals(k))) {
                        if (oldValue.equals(e.value)) {
                            e.value = newValue;
                            ++modCount;
                            replaced = true;
                        }
                        break;
                    }
                }
            } finally {
                unlock();
            }
            return replaced;
        }

        final V replace(K key, int hash, V value) {
            if (!tryLock())
                scanAndLock(key, hash);
            V oldValue = null;
            try {
                HashEntry<K,V> e;
                for (e = entryForHash(this, hash); e != null; e = e.next) {
                    K k;
                    if ((k = e.key) == key ||
                        (e.hash == hash && key.equals(k))) {
                        oldValue = e.value;
                        e.value = value;
                        ++modCount;
                        break;
                    }
                }
            } finally {
                unlock();
            }
            return oldValue;
        }

        final void clear() {
            lock();
            try {
                HashEntry<K,V>[] tab = table;
                for (int i = 0; i < tab.length ; i++)
                    setEntryAt(tab, i, null);
                ++modCount;
                count = 0;
            } finally {
                unlock();
            }
        }
    }

上面的代码清单4其实就是Segment类的代码,之前我们说过ConcurrentHashMap的put操作是由Segment的put来执行的。细心的读者可以看到Segment继承了ReentrantLock,也就是其内部是可以直接使用lock与unlock来进行同步操作的。从代码中我们可以看到其put操作是线程安全的,而且Segment的其他成员函数也是线程安全的。这里如果认真看了代码清单2,3,4的同学会发现segments数组的长度取决于构造函数指定的concurrencyLevel的值,在存储数据时并不会扩容segments的数组长度,在进行存储数据时,扩容的是segment的成员变量table数组的长度。

存储数据的姿势搞清楚之后,我们就看看怎么取我们的数据,请看代码清单5:
代码清单5

public V get(Object key) {
        Segment<K,V> s; // manually integrate access methods to reduce overhead
        HashEntry<K,V>[] tab;
        int h = hash(key);
        long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;//计算索引
        if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
            (tab = s.table) != null) {//通过CAS获索引处Segment对象,并进一步获得table的引用
            for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
                     (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);//找到table索引处的单链表,并循环遍历
                 e != null; e = e.next) {
                K k;
                if ((k = e.key) == key || (e.hash == h && key.equals(k)))
                    return e.value;
            }
        }
        return null;
    }

代码清单5没有什么可以过多的说的,就是定位索引,遍历单链表,找到返回对应值,否则返回null.如果大家明白了put的过程,get操作是很好理解的。

接下来我们看下ConcurrentHashMap是怎么统计目前包含多少键值对的,请看代码清单6:
代码清单6

public int size() {
        // Try a few times to get accurate count. On failure due to
        // continuous async changes in table, resort to locking.
        final Segment<K,V>[] segments = this.segments;
        int size;
        boolean overflow; // 是否溢出
        long sum;         // 修改次数
        long last = 0L;   // 上遍历时的修改次数
        int retries = -1; 
        try {
            for (;;) {
                if (retries++ == RETRIES_BEFORE_LOCK) {// 这里注意只有可重锁的次数大于最大值时,才会对segments数组元素依次上锁
                    for (int j = 0; j < segments.length; ++j)
                        ensureSegment(j).lock(); // force creation
                }
                sum = 0L;
                size = 0;
                overflow = false;
                for (int j = 0; j < segments.length; ++j) {
                    Segment<K,V> seg = segmentAt(segments, j);
                    if (seg != null) {
                        sum += seg.modCount;
                        int c = seg.count;
                        if (c < 0 || (size += c) < 0)//如果相加为负数,则说明已经超过最大值,溢出,即overflow为true
                            overflow = true;
                    }
                }
                if (sum == last)//如果为true则代表,没有在累积键值对时,没有其他线程改变数据结构,则退出循环。
                    break;
                last = sum;
            }
        } finally {
            if (retries > RETRIES_BEFORE_LOCK) {//解锁
                for (int j = 0; j < segments.length; ++j)
                    segmentAt(segments, j).unlock();
            }
        }
        return overflow ? Integer.MAX_VALUE : size;
    }

上面的size函数首先不加锁循环执行以下操作:遍历segments数组元素,获得count和modCount的值并相加。如果连续两次所有的modcount相加结果相等,即last==sum,则过程中没有发生其他线程修改ConcurrentHashMap的情况,返回获得的值。当循环次数超过可重入最大值时,这时需要对所有的段组元素进行加锁,获取返回值后再依次解锁。值得注意的是,加锁过程中要强制创建所有的Segment,否则容易出现其他线程创建Segment并进行put,remove等操作。

要说的内容就这么多,如果文中有不对的地方,麻烦指出,如果喜欢我的文章,可以动动手指关注一下,赞一下,我会有更大的动力写出更多的文章,转载请注明出处:blog.csdn.net/android_jia…