一文读完GitHub30+篇顶级机器学习论文(附摘要和论文下载地址)

228 阅读2分钟

学术领域,最新的机器学习技术都做到了什么水平?Github上有一个开源项目,专门用于更新最新的研究突破,具体说来,就是什么算法在哪一个数据集上取得了state-of-the-art 的成果。大类包括:监督学习、半监督学习和无监督学习、迁移学习、强化学习,小类包括语音、计算机视觉和NLP。

我有几张阿里云幸运券分享给你,用券购买或者升级阿里云相应产品会有特惠惊喜哦!把想要买的产品的幸运券都领走吧!快下手,马上就要抢光了。

这一份列表几乎囊括了2017年机器学习领域所有最重大的突破,从微软对话语音识别错误率将至5.1%、到Hinton掀起深度学习革命的Capsule 网络、再到谷歌的“一个模型学习所有”“Attention is all you need”以及Facebook在机器翻译上的屡次突破,以及让大家兴奋的AlphaGo Zero。

这不仅仅是一份论文和代码资源的列表,更是2017年机器学习和人工智能里程碑的表单,在这里,你可以读懂2017机器学习领域究竟在哪些方向上取得了突破,各大前沿机构和学术大牛们在哪些方向上发力。

作者说:“本库为所有机器学习问题提供了当前最优结果,并尽最大努力使库保持随时更新状态”,我们也同样期待这一列表不断更新,出现更多让人拍案叫绝的最新研究成果,将人工智能不断往前推进。

最新更新时间:2017年11月17日

本库的分类如下:

  • 监督学习

  1. Speech
  2. 计算机视觉
  3. NLP

  • 半监督学习:计算机视觉
  • 无监督学习

  1. Speech
  2. 计算机视觉
  3. NLP



点击链接阅读全文