首页
AI Coding
沸点
课程
直播
活动
APP
插件
搜索历史
清空
创作者中心
写文章
发沸点
写笔记
写代码
草稿箱
创作灵感
查看更多
登录
注册
AI智能体从入门到实践
彼岸花开了吗
创建于2025-08-30
订阅专栏
认识、了解AI大模型的API调用,细剖基础知识,逐步搭建智能体过程中需要掌握、了解的知识点,搭建属于的自己的知识库平台,构建行业智能体
等 1 人订阅
共44篇文章
创建于2025-08-30
订阅专栏
默认顺序
默认顺序
最早发布
最新发布
构建AI智能体:四十四、线性回归遇见大模型:从数学原理到智能实战
什么是线性回归 结合我们生活中例子,如果你是一个水果店老板,你想知道“草莓的重量”和“它的价格”之间有什么关系。凭经验你知道,越重的草莓肯定越贵。线性回归就是帮你把这种模糊的经验,变成一个精确的数
构建AI智能体:四十三、智能数据分析机器人:基于Qwen-Agent与Text2SQL的门票分析方案
摘要:本文介绍了一个基于Qwen-Agent和Text2SQL技术的智能门票数据分析系统。该系统通过自然语言交互降低技术门槛,使业务人员可直接查询和分析数据。
构建AI智能体:四十二、使用 Qwen-Agent Assistant 调用高德 API 实现天气查询
本文介绍了如何将Qwen-Agent智能助手与高德天气API集成,构建一个能响应自然语言查询的天气服务系统。主要内容包括:高德天气API的注册、参数配置及数据解析方法;
构建AI智能体:四十一、大模型思维链提示工程:技术原理与行业应用案例分析
本文介绍了思维链提示技术及其应用。思维链提示是一种引导大模型进行逐步推理的提示工程技术,通过结构化提示模拟人类解决问题的逻辑分析路径,使模型能够显式化中间推理步骤,从而提升推理准确性与可解释性。
构建AI智能体:四十、K-Means++与RAG的融合创新:智能聚类与检索增强生成的深度应用
KMeans++算法优化RAG系统性能研究 本文探讨了KMeans++算法与检索增强生成(RAG)系统的融合应用。研究针对传统RAG系统在大规模知识库处理中的效率瓶颈,提出采用KMeans++聚类算法
构建AI智能体:三十九、中文新闻智能分类:K-Means聚类与Qwen主题生成的融合应用
K-Means作为最经典和广泛使用的聚类算法,以其简单性和效率在数据科学中占据重要地位。尽管有其局限性,但通过合理的初始化方法、参数调优和与大模型的结合,K-Means仍然能够解决许多实际聚类问题。
构建AI智能体:三十八、告别“冷启动”:看大模型如何解决推荐系统的世纪难题
协同过滤是推荐系统中广泛使用的技术,其核心思想是利用用户行为数据发现相似用户或物品进行推荐。摘要包括:1)协同过滤基于用户历史行为数据,通过计算相似度(如余弦相似度、皮尔逊相关系数)预测用户偏好;
构建AI智能体:三十七、从非结构化文本到结构化知识:基于AI的医疗知识图谱构建与探索
知识图谱是一种用图结构表示实体及其关系的技术,通过三元组(主体-关系-客体)构建语义网络。文章以医疗领域为例,详细介绍了知识图谱的构建流程:数据预处理、实体识别、关系抽取、知识融合、存储与可视化等步骤
构建AI智能体:三十六、决策树的核心机制(二):抽丝剥茧简化专业术语推理最佳分裂点
本文深入探讨了决策树的核心机制,重点分析了最佳分裂点的确定方法。通过鸢尾花分类案例,详细解析了基尼不纯度、加权平均基尼不纯度和信息增益等关键指标的计算过程。
构建AI智能体:三十五、决策树的核心机制(一):刨根问底鸢尾花分类中的参数推理计算
本文介绍了决策树算法的基本原理和应用。决策树通过一系列特征判断(如西瓜的纹路、声音)进行分类,其结构包括根节点、内部节点、叶节点和分支。算法通过计算信息增益或基尼不纯度选择最佳分裂特征
构建AI智能体:三十四、LangChain SQLDatabaseToolkit终极指南:架构、优势与最佳实践
SQLDatabaseToolkit 是 LangChain 框架中的一个核心组件,它不属于一个独立的软件,而是一个工具箱或工具集。它的核心目的是为大语言模型提供与 SQL 数据库进行交互的能力
构建AI智能体:三十三、LangChain LCEL深度解析:基于Runnable协议的声明式编程新范式
本文介绍了LangChain表达式语言(LCEL)的核心概念及其优势。LCEL通过Runnable协议和管道操作符(|)提供了一种声明式、模块化的方式来构建AI应用工作流。
构建AI智能体:三十二、LangChain智能体:打造会使用工具(Tools)、有记忆(Memory)的AI助手
本文系统介绍了LangChain框架的核心组件与工作机制。LangChain是一个为大语言模型应用开发设计的开源框架,包含模型层、提示管理、处理链、记忆系统和代理机制五大核心组件。
构建AI智能体:三十一、AI医疗场景实践:医学知识精准问答+临床智能辅助决策CDSS
本文探讨了医疗AI从传统问答系统向智能辅助决策的演进过程。传统系统依赖规则和模板,存在维护成本高、灵活性差等局限。现代系统通过大语言模型、向量检索等技术,构建了医学知识精准问答和临床决策支持
构建AI智能体:三十、精雕细琢:驾驭关键词的细微差别,解锁高质量提示词编排与视觉表征
文章系统阐述了人工智能图像生成中的提示词工程(Prompt Engineering)技术。通过具体案例对比,展示了细微的提示词差异如何导致图像质量的巨大分野,详细解析了提示词的核心要素、语法结构及编排
构建AI智能体:二十九、Text2SQL:告别繁琐SQL!用大模型自助生成数据报表
Text2SQL技术通过自然语言处理将用户查询转换为SQL语句,解决企业数据查询效率低下的痛点。该技术包含语义理解、模式对齐、SQL生成和优化等核心处理过程
构建AI智能体:二十八、大语言模型BERT:原理、应用结合日常场景实践全面解析
BERT是谷歌2018年推出的革命性自然语言处理模型,采用Transformer编码器架构和预训练-微调范式。其核心创新在于双向上下文理解和掩码语言建模,能有效处理一词多义
构建AI智能体:二十七、大模型如何“考出好成绩”:详解内在评测与外在评测方法
本文系统介绍了语言模型评测的两种主要方法:内在评测和外在评测。内在评测聚焦模型基础语言能力,核心指标困惑度(PPL)反映模型预测准确性,计算过程包括条件概率、对数概率和及指数转换。
构建AI智能体:二十六、语言模型的“解码策略”:一文读懂AI文本生成的采样方法
本文探讨了AI文本生成中的采样方法,这些方法决定了AI如何选择候选词来生成文本。文章介绍了两种主要方法:确定性方法(贪心算法和束搜索)和随机采样方法(基础随机采样、温度采样、Top-k采样和Top-p
构建AI智能体:二十五、智能时代的知识库全链路优化:从构建、检索到生命周期健康管理
《智能时代的知识库构建与优化》摘要: 本文系统阐述了AI时代企业知识库的智能化转型路径。传统知识库存在检索效率低、更新滞后等痛点,而融合大语言模型与向量数据库的新一代知识库能实现语义理解、智能问答
下一页