首页
AI Coding
NEW
沸点
课程
直播
活动
AI刷题
APP
插件
搜索历史
清空
创作者中心
写文章
发沸点
写笔记
写代码
草稿箱
创作灵感
查看更多
会员
登录
注册
强化学习
汀丶人工智能
创建于2023-04-04
订阅专栏
强化学习
等 6 人订阅
共28篇文章
创建于2023-04-04
订阅专栏
默认顺序
默认顺序
最早发布
最新发布
人工智能LLM模型:奖励模型的训练、PPO 强化学习的训练、RLHF
人工智能LLM模型:奖励模型的训练、PPO 强化学习的训练、RLHF 1.奖励模型的训练 1.1大语言模型中奖励模型的概念 在大语言模型完成 SFT 监督微调后,下一阶段是构建一个奖励模型来对问答对作
强化学习:基于蒙特卡洛树和策略价值网络的深度强化学习五子棋
实现了基于蒙特卡洛树和策略价值网络的深度强化学习五子棋(含码源) 特点 自我对弈 详细注释 流程简单 代码结构 net:策略价值网络实现 mcts:蒙特卡洛树实现 server:前端界面代码 lega
强化学习从基础到进阶–案例与实践[11]:AlphaStar论文解读、监督学习、强化学习、模仿学习、多智能体学习、消融实验
强化学习从基础到进阶–案例与实践[11]:AlphaStar论文解读、监督学习、强化学习、模仿学习、多智能体学习、消融实验 AlphaStar及背景简介 相比于之前的深蓝和AlphaGo,对于《星际争
强化学习从基础到进阶-案例与实践[5.1]:Policy Gradient-Cart pole游戏展示
强化学习从基础到进阶-案例与实践[5.1]:Policy Gradient-Cart pole游戏展示 强化学习(Reinforcement learning,简称RL)是机器学习中的一个领域,区别与
强化学习从基础到进阶-案例与实践[4.2]:深度Q网络DQN-Cart pole游戏展示
强化学习从基础到进阶-案例与实践[4.2]:深度Q网络DQN-Cart pole游戏展示 强化学习(Reinforcement learning,简称RL)是机器学习中的一个领域,区别与监督学习和无监
强化学习从基础到进阶--案例与实践含面试必知必答[10]:模仿学习、行为克隆、逆强化学习、第三人称视角模仿学习、序列生成和聊天机器人
强化学习从基础到进阶--案例与实践含面试必知必答[10]:模仿学习、行为克隆、逆强化学习、第三人称视角模仿学习、序列生成和聊天机器人 模仿学习(imitation learning,IL) 讨论的问题
强化学习从基础到进阶--案例与实践含面试必知必答[9]:稀疏奖励、reward shaping、curiosity、分层强化学习HRL
强化学习从基础到进阶--案例与实践含面试必知必答[9]:稀疏奖励、reward shaping、curiosity、分层强化学习HRL 实际上用强化学习训练智能体的时候,多数时候智能体都不能得到奖励。
强化学习从基础到进阶-常见问题和面试必知必答\[8]:近端策略优化(proximal policy optimization,PPO)算法
强化学习从基础到进阶-常见问题和面试必知必答[8]:近端策略优化(proximal policy optimization,PPO)算法 1.核心词汇 同策略(on-policy):要学习的智能体和与
强化学习从基础到进阶--案例与实践[8]:近端策略优化(proximal policy optimization,PPO)算法
强化学习从基础到进阶--案例与实践[8]:近端策略优化(proximal policy optimization,PPO)算法 相关链接以及码源见文末 1.从同策略到异策略PPO算法 在介绍近端策略优
强化学习从基础到进阶--案例与实践[7.1]:深度确定性策略梯度DDPG算法、双延迟深度确定性策略梯度TD3算法详解项目实战
强化学习从基础到进阶--案例与实践[7.1]:深度确定性策略梯度DDPG算法、双延迟深度确定性策略梯度TD3算法详解项目实战 1、定义算法 1.1 定义模型 1.2 定义经验回放 1.3 定义智能体
强化学习从基础到进阶-常见问题和面试必知必答[7]:深度确定性策略梯度DDPG算法、双延迟深度确定性策略梯度TD3算法详解
强化学习从基础到进阶-常见问题和面试必知必答[7]:深度确定性策略梯度DDPG算法、双延迟深度确定性策略梯度TD3算法详解 1.核心词汇 深度确定性策略梯度(deep deterministic po
强化学习从基础到进阶--案例与实践[7]:深度确定性策略梯度DDPG算法、双延迟深度确定性策略梯度TD3算法详解
强化学习从基础到进阶--案例与实践[7]:深度确定性策略梯度DDPG算法、双延迟深度确定性策略梯度TD3算法详解 1. 离散动作与连续动作的区别 离散动作与连续动作是相对的概念,一个是可数的,一个是不
强化学习从基础到进阶-案例与实践[6]:演员-评论员算法(advantage actor-critic,A2C),异步A2C、与生成对抗网络的联系等详解
强化学习从基础到进阶-案例与实践[6]:演员-评论员算法(advantage actor-critic,A2C),异步A2C、与生成对抗网络的联系等详解 在REINFORCE算法中,每次需要根据一个策
强化学习从基础到进阶-常见问题和面试必知必答\[6]:演员-评论员算法(advantage actor-critic,A2C),异步A2C、与生成对抗网络的联系
强化学习从基础到进阶-常见问题和面试必知必答[6]:演员-评论员算法(advantage actor-critic,A2C),异步A2C、与生成对抗网络的联系等详解 1.核心词汇 优势演员-评论员(a
强化学习从基础到进阶-常见问题和面试必知必答[5]::梯度策略、添加基线(baseline)、优势函数、动作分配合适的分数(credit)
强化学习从基础到进阶-常见问题和面试必知必答[5]::梯度策略、添加基线(baseline)、优势函数、动作分配合适的分数(credit) 1.核心词汇 策略(policy):在每一个演员中会有对应的
强化学习从基础到进阶-案例与实践[5]:梯度策略、添加基线(baseline)、优势函数、动作分配合适的分数(credit)
强化学习从基础到进阶-案例与实践[5]:梯度策略、添加基线(baseline)、优势函数、动作分配合适的分数(credit) 1 策略梯度算法 如图 5.1 所示,强化学习有 3 个组成部分:演员(a
强化学习从基础到进阶-案例与实践[4.1]:深度Q网络-DQN项目实战CartPole-v0
强化学习从基础到进阶-案例与实践[4.1]:深度Q网络-DQN项目实战CartPole-v0 1、定义算法 相比于Q learning,DQN本质上是为了适应更为复杂的环境,并且经过不断的改良迭代,到
强化学习从基础到进阶-常见问题和面试必知必答\[4]::深度Q网络-DQN、double DQN、经验回放、rainbow、分布式DQN
强化学习从基础到进阶-常见问题和面试必知必答[4]::深度Q网络-DQN、double DQN、经验回放、rainbow、分布式DQN 1.核心词汇 深度Q网络(deep Q-network,DQN)
强化学习从基础到进阶-案例与实践[4]:深度Q网络-DQN、double DQN、经验回放、rainbow、分布式DQN
强化学习从基础到进阶-案例与实践[4]:深度Q网络-DQN、double DQN、经验回放、rainbow、分布式DQN 传统的强化学习算法会使用表格的形式存储状态价值函数 $V(s)$ 或动作价值函
下一页