首页
AI Coding
NEW
沸点
课程
直播
活动
AI刷题
APP
插件
搜索历史
清空
创作者中心
写文章
发沸点
写笔记
写代码
草稿箱
创作灵感
查看更多
会员
登录
注册
DecryptPrompt
风雨中的小七
创建于2023-02-25
订阅专栏
总结Prompt领域的相关模型
等 42 人订阅
共55篇文章
创建于2023-02-25
订阅专栏
默认顺序
默认顺序
最早发布
最新发布
解密prompt系列35. 标准化Prompt进行时! DSPy论文串烧和代码示例
这一章我们会先梳理DSPy相关的几篇核心论文了解下框架背后的设计思想和原理,然后以FinEval的单选题作为任务,从简单指令,COT指令,到采样Few-shot和优化指令给出代码示例和效果评估。
解密prompt系列34. RLHF之训练另辟蹊径:循序渐进 & 青出于蓝
前几章我们讨论了RLHF的样本构建优化和训练策略优化,这一章我们讨论两种不同的RL训练方案,分别是基于过程训练,和使用弱Teacher来监督强Student 循序渐进:PRM & ORM 想要获得过程
解密Prompt系列33. LLM之图表理解任务-多模态篇
这一章我们聚焦多模态图表数据。先讨论下单纯使用prompt的情况下,图片和文字模态哪种表格模型理解的效果更好更好,再说下和表格相关的图表理解任务的微调方案。
解密Prompt系列32. LLM之表格理解任务-文本模态
这一章我们聊聊大模型表格理解任务,在大模型时代主要出现在包含表格的RAG任务,以及表格操作数据抽取文本对比等任务中。这一章先聊单一的文本模态,我们分别介绍微调和基于Prompt的两种方案。
解密Prompt系列31. LLM Agent之从经验中不断学习的智能体
模型想要完成自主能力进化和自主能力获得,需要通过Self-Reflection from Past Experience来实现。那如何获得经历,把经历转化成经验,并在推理中使用呢?本章介绍三种方案
解密Prompt系列30. LLM Agent之互联网冲浪智能体
这一章介绍自主浏览操作网页的WebAgent和数据集:初级MiniWoB++,高级MIND2WEB,可交互WEBARENA,多模态WebVoyager,多轮对话WebLINX,复杂AutoWebGLM
解密Prompt系列29. LLM Agent之真实世界海量API解决方案:ToolLLM & AnyTool
这一章我们针对真实世界中工具调用的以下几个问题,介绍微调(ToolLLM)和prompt(AnyTool)两种方案
解密Prompt系列28. LLM Agent之金融领域摸索:FinMem & FinAgent
本章介绍金融领域大模型智能体,并梳理金融LLM相关资源。大模型智能体当前集中在个股交易决策场景,而使用大模型智能体最显著的优势在于对海量信息的高效处理,存储和信息联想。FinMEM和FinAgent
解密prompt系列27. LLM对齐经验之如何降低通用能力损失
这一章我们重点讨论下如何注入某一类任务或能力的同时,尽可能不损失模型原有的通用指令理解能力。这里我们讨论两种方案,来尽可能降低通用能力的损失,一种数据方案,一种训练方案。
解密prompt25. RLHF改良方案之样本标注:RLAIF & SALMON
之前我们主要唠了RLHF训练相关的方案,这一章我们主要针对RLHF的样本构建阶段,引入机器标注来降低人工标注的成本。主要介绍两个方案:RLAIF,和IBM的SALMON
解密prompt系列26. 人类思考vs模型思考:抽象和发散思维
在Chain of Thought出来后,出现过许多的优化方案,这一章我们类比人类已有的思维方式,就抽象思维和发散思维这两个方向,聊聊step back和diversity prompt
解密prompt24. RLHF新方案之训练策略:SLiC-HF & DPO & RRHF & RSO
这几章我们会针对经典RLHF算法存在的不稳定,成本高,效率低等问题聊聊新方案。第一章我们先说RLHF训练策略相关的方案,包括SLiC-HF,DPO,RRHF和RSO,他们之间有很多相似之处~
解密Prompt系列23.大模型幻觉分类&归因&检测&缓解方案脑图全梳理
这一章我们单独针对大模型的幻觉问题,从幻觉类型,幻觉来源,幻觉检测,幻觉缓解这四个方向进行整理。这里就不细说任意一种方法了,直接用脑图概览地看下整个大模型幻觉领域
解密Prompt系列22. LLM Agent之RAG的反思:放弃了压缩还是智能么?
当前RAG多数只让模型基于检索内容回答,其实限制了模型自身知识压缩形成的智能。既要事实性又要模型智能,需要最大化使用模型内化到参数中的信息,只在必要时调用外部知识。这里介绍前置和后置处理的几种方案
解密Prompt系列21. LLM Agent之再谈RAG的召回信息密度和质量
话接上文的召回多样性优化,这一章我们唠唠召回的信息密度和质量。同样参考经典搜索和推荐框架,这一章对应排序+重排环节。我们先对比下经典框架和RAG的异同,再分别介绍几种适用大模型的排序和重排方案~
解密Prompt系列20. LLM Agent之再谈RAG的召回多样性优化
看完openai闭门会议对RAG又有些新的思考。这一章我们参考主流的搜索框架,结合新老论文,和langchain新功能聊聊RAG框架中召回多样性的优化方案,包括如何提高query多样性和索引多样性
解密Prompt系列19. LLM Agent之数据分析领域的应用:Data-Copilot & InsightPilot
这一章我们聊聊大模型在数据分析领域的应用。数据分析主要是指在获取数据之后的数据清洗,数据处理,建模,数据洞察和可视化的步骤。这里我们聊两篇论文:Data-Copilot 和 InsightPilot
解密Prompt系列18. LLM Agent之只有智能体的世界
前四章不论是和数据库和模型还是和搜索引擎交互,更多还是大模型和人之间的交互。这一章我们来唠唠只有大模型智能体的世界!分别基于源码介绍斯坦福小镇和Chatdev两篇论文
解密Prompt系列17. LLM对齐方案再升级 WizardLM & BackTranslation & SELF-ALIGN
这一章介绍通过扩写,改写,以及回译等半监督样本挖掘方案对种子样本进行扩充,提高种子指令样本的多样性和复杂度,这里我们分别介绍Microsoft,Meta和IBM提出的三个方案。
解密Prompt系列16.LLM对齐经验之数据越少越好?LTD & LIMA & ALPAGASUS
总结下指令微调、对齐样本筛选相关的方案包括LIMA,LTD等。论文都是以优化指令样本为核心,提出对齐阶段的数据质量优于数量,少量+多样+高质量的对齐数据,就能让你快速拥有效果杠杠的模型
下一页