首页
AI Coding
NEW
沸点
课程
直播
活动
AI刷题
APP
插件
搜索历史
清空
创作者中心
写文章
发沸点
写笔记
写代码
草稿箱
创作灵感
查看更多
会员
登录
注册
推荐搜索算法
汀丶人工智能
创建于2023-02-21
订阅专栏
推荐搜索算法
等 11 人订阅
共26篇文章
创建于2023-02-21
订阅专栏
默认顺序
默认顺序
最早发布
最新发布
QAnything本地知识库问答系统:基于检索增强生成式应用(RAG)两阶段检索、支持海量数据、跨语种问答
QAnything本地知识库问答系统:基于检索增强生成式应用(RAG)两阶段检索、支持海量数据、跨语种问答 QAnything (Question and Answer based on Anythi
应对数据爆炸时代,揭秘向量数据库如何成为AI开发者的新宠,各数据库差异对比
应对数据爆炸时代,揭秘向量数据库如何成为AI开发者的新宠,各数据库差异对比 随着大模型的爆火,向量数据库也越发成为开发者关注的焦点。为了方便大家更好地了解向量数据库,我们特地推出了《Hello, Ve
Milvus性能优化提速之道:揭秘优化技巧,避开十大误区,确保数据一致性无忧,轻松实现高性能
Milvus性能优化提速之道:揭秘优化技巧,避开十大误区,确保数据一致性无忧,轻松实现高性能 Milvus 是全球最快的向量数据库,在最新发布的 Milvus 2.2 benchmark中,Milvu
Elasticsearch实战:常见错误及详细解决方案
Elasticsearch实战:常见错误及详细解决方案 1.read_only_allow_delete":"true" 当我们在向某个索引添加一条数据的时候,可能(极少情况)会碰到下面的报错: 上述
ElasticSearch实战指南必知必会:安装分词器、高级查询、打分机制
ElasticSearch实战指南必知必会:安装中文分词器、ES-Python使用、高级查询实现位置坐标搜索以及打分机制 1.ElasticSearch之-安装中文分词器 elasticsearch
ElasticSearch深度解析入门篇:高效搜索解决方案的介绍与实战案例讲解,带你避坑
ElasticSearch深度解析入门篇:高效搜索解决方案的介绍与实战案例讲解,带你避坑 1.Elasticsearch 产生背景 大规模数据如何检索 如:当系统数据量上了 10 亿、100 亿条的时
释放搜索潜力:基于ES(ElasticSearch)打造高效的语义搜索系统,让信息尽在掌握
释放搜索潜力:基于ES(ElasticSearch)打造高效的语义搜索系统,让信息尽在掌握[1.安装部署篇--简洁版],支持Linux/Windows部署安装 效果展示 PaddleNLP Pipel
logstash 与ElasticSearch:从CSV文件到搜索宝库的导入指南
logstash 与ElasticSearch:从CSV文件到搜索宝库的导入指南 使用 logstash 导入数据到 ES 时,由三个步骤组成:input、filter、output。整个导入过程可视
ElasticSearch安装、插件介绍及Kibana的安装与使用详解
ElasticSearch安装、插件介绍及Kibana的安装与使用详解 1.安装 ElasticSearch 1.1 安装 JDK 环境 因为 ElasticSearch 是用 Java 语言编写的,
Elasticsearch向量检索的演进与变革:从基础到应用
Elasticsearch向量检索的演进与变革:从基础到应用 1.引言 向量检索已经成为现代搜索和推荐系统的核心组件。 通过将复杂的对象(例如文本、图像或声音)转换为数值向量,并在多维空间中进行相似性
Elasticsearch Relevance Engine---为AI变革提供高级搜索能力[ES向量搜索、常用配置参数、聚合功能等详解]
Elasticsearch Relevance Engine---为AI变革提供高级搜索能力[ES向量搜索、常用配置参数、聚合功能等详解] 今天要介绍的 Elasticsearch Relevance
向量召回:深入评估离线体系,探索优质召回方法
向量召回:深入评估离线体系,探索优质召回方法 1.简介 近年来,基于向量进行召回的做法在搜索和推荐领域都得到了比较广泛的应用,并且在学术界发表的论文中,基于向量的 dense retrieve 的方法
挖掘文本的奇妙力量:传统与深度方法探索匹配之道
挖掘文本的奇妙力量:传统与深度方法探索匹配之道 文本向量表示咋做?文本匹配任务用哪个模型效果好? 许多 NLP 任务的成功离不开训练优质有效的文本表示向量。特别是文本语义匹配(Semantic Tex
语义检索系统之排序模块:基于ERNIE-Gram的Pair-wise和基于RocketQA的CrossEncoder训练的单塔模型
语义检索系统之排序模块:基于ERNIE-Gram的Pair-wise和基于RocketQA的CrossEncoder训练的单塔模型 文本匹配任务数据每一个样本通常由两个文本组成(query,title
语义检索系统:基于Milvus 搭建召回系统抽取向量进行检索,加速索引
语义检索系统:基于Milvus 搭建召回系统抽取向量进行检索,加速索引 目标:使用 Milvus 搭建召回系统,然后使用训练好的语义索引模型,抽取向量,插入到 Milvus 中,然后进行检索。 语义搜
基于无监督训练SimCSE+In-batch Negatives策略有监督训练的语义索引召回
基于无监督训练SimCSE+In-batch Negatives策略有监督训练的语义索引召回 语义索引(可通俗理解为向量索引)技术是搜索引擎、推荐系统、广告系统在召回阶段的核心技术之一。语义索引模型的
语义检索系统:基于无监督预训练语义索引召回:SimCSE、Diffcse
语义检索系统:基于无监督预训练语义索引召回:SimCSE、Diffcse 语义索引(可通俗理解为向量索引)技术是搜索引擎、推荐系统、广告系统在召回阶段的核心技术之一。语义索引模型的目标是:给定输入文本
基于Milvus+ERNIE+SimCSE+In-batch Negatives样本策略的学术文献语义检索系统
基于Milvus+ERNIE+SimCSE+In-batch Negatives样本策略的学术文献语义检索系统 0.前言 语义索引(可通俗理解为向量索引)技术是搜索引擎、推荐系统、广告系统在召回阶段的
领域知识图谱的医生推荐系统:利用BERT+CRF+BiLSTM的医疗实体识别,建立医学知识图谱,建立知识问答系统
领域知识图谱的医生推荐系统:利用BERT+CRF+BiLSTM的医疗实体识别,建立医学知识图谱,建立知识问答系统 本项目主要实现了疾病自诊和医生推荐两个功能并构建了医生服务指标评价体系。疾病自诊主要通
推荐系统[八]算法实践总结V3:重排在快手短视频推荐系统中的应用and手淘信息流多兴趣多目标重排技术
本文正在参加 人工智能创作者扶持计划 ” 1.重排在快手短视频推荐系统中的应用 导语:快手短视频作为国内比较领先的短视频和直播社区,具有巨大的日活流量。短视频平台拥有巨大的流量入口和复杂的业务形态。例
下一页