首页
AI Coding
NEW
沸点
课程
直播
活动
AI刷题
APP
插件
搜索历史
清空
创作者中心
写文章
发沸点
写笔记
写代码
草稿箱
创作灵感
查看更多
会员
登录
注册
AI系统
ZOMI酱
创建于2022-01-09
订阅专栏
收录AI框架的系统知识
等 16 人订阅
共160篇文章
创建于2022-01-09
订阅专栏
默认顺序
默认顺序
最早发布
最新发布
【AI系统】模型剪枝
本文将介绍模型剪枝的概念、方法和流程,这是一种通过移除神经网络中的冗余或不重要参数来减小模型规模和提高效率的模型压缩技术。 剪枝不仅可以减少模型的存储和计算需求,还能在保持模型性能的同时提高模型的泛化
【AI系统】训练后量化与部署
本文将会重点介绍训练后量化技术的两种方式:动态和静态方法,将模型权重和激活从浮点数转换为整数,以减少模型大小和加速推理。并以 KL 散度作为例子讲解校准方法和量化粒度控制来平衡模型精度和性能。 训练后
【AI系统】感知量化训练 QAT
本文将会介绍感知量化训练(QAT)流程,这是一种在训练期间模拟量化操作的方法,用于减少将神经网络模型从 FP32 精度量化到 INT8 时的精度损失。QAT 通过在模型中插入伪量化节点(FakeQua
【AI系统】低比特量化原理
计算机里面数值有很多种表示方式,如浮点表示的 FP32、FP16,整数表示的 INT32、INT16、INT8,量化一般是将 FP32、FP16 降低为 INT8 甚至 INT4 等低比特表示。 模型
【AI系统】模型压缩基本介绍
随着神经网络模型的复杂性和规模不断增加,模型对存储空间和计算资源的需求越来越多,使得部署和运行成本显著上升。模型压缩的目标是通过减少模型的存储空间、减少计算量或提高模型的计算效率,从而在保持模型性能的
【AI系统】EfficientFormer 系列
本文主要介绍一种轻量化的 Transformer 结构,在获得高性能的同时,能够保持一定的推理速度。以延迟为目标进行优化设计。通过延迟分析重新探讨 ViT 及其变体的设计原则。 EfficientFo
【AI系统】MobileFormer
在本文中,将介绍一种新的网络-MobileFormer,它实现了 Transformer 全局特征与 CNN 局部特征的融合,在较低的成本内,创造一个高效的网络。通过本文,让大家去了解如何将 CNN
【AI系统】MobileVit 系列
自 Vision Transformer 出现之后,人们发现 Transformer 也可以应用在计算机视觉领域,并且效果还是非常不错的。但是基于 Transformer 的网络模型通常具有数十亿或数
【AI系统】GhostNet 系列
本文主要会介绍 GhostNet 系列网络,在本文中会给大家带来卷积结构的改进方面的轻量化,以及与注意力(self-attention)模块的进行结合,部署更高效,更适合移动计算的 GhostNetV
【AI系统】EfficientNet 系列
本文主要介绍 EfficientNet 系列,在之前的文章中,一般都是单独增加图像分辨率或增加网络深度或单独增加网络的宽度,来提高网络的准确率。而在 EfficientNet 系列论文中,会介绍使用
【AI系统】FBNet 系列
本文主要介绍 FBNet 系列,在这一篇会给大家带来三种版本的 FBNet 网络,从基本 NAS 搜索方法开始,到 v3 版本的独特方法。在本文中读者会了解到如何用 NAS 搜索出最好的网络和训练参数
【AI系统】ESPNet 系列
本文将会介绍 ESPNet 系列,该网络主要应用在高分辨率图像下的语义分割,在计算内存占用、功耗方面都非常高效,重点介绍一种高效的空间金字塔卷积模块(ESP Module);而在 ESPNet V2
【AI系统】MobileNet 系列
在本文会介绍 MobileNet 系列,重点在于其模型结构的轻量化设计,主要介绍详细的轻量化设计原则,基于这原则,MobileNetV1 是如何设计成一个小型,低延迟,低功耗的参数化模型,可以满足各种
【AI系统】ShuffleNet 系列
本文会介绍 ShuffleNet 系列,重点在于其模型结构的轻量化设计,涉及如何降低深度网络计算量,在本文中会着重会讲解逐点分组卷积(Pointwise Group Convolution)和通道混洗
【AI系统】SqueezeNet 系列
本文将介绍 SqueezeNet 系列网络,在轻量化模型这个范畴中,Squeezenet 是最早的研究。主要针对了一些组件进行轻量化。与以往的网络都只讲网络如何设计不同。SqueezeNext 则从硬
【AI系统】Transformer 模型小型化
自 Vision Transformer 出现之后,人们发现 Transformer 也可以应用在计算机视觉领域,并且效果还是非常不错的。但是基于 Transformer 的网络模型通常具有数十亿或数
【AI系统】轻量级CNN模型新进展
在本文会接着介绍 CNN 模型的小型化,除了第二篇文章提到的三个模型外,在本文会继续介绍 ESPNet 系列,FBNet 系列,EfficientNet 系列和 GhostNet 系列。 ESPNet
【AI系统】轻量级CNN模型综述
神经网络模型被广泛的应用于工业领域,并取得了巨大成功。然而,由于存储空间以及算力的限制,大而复杂的神经网络模型是难以被应用的。首先由于模型过于庞大,计算参数多(如下图所示),面临内存不足的问题。其次某
【AI系统】推理参数
本文将介绍 AI 模型网络参数方面的一些基本概念,以及硬件相关的性能指标,为后面让大家更了解模型轻量化做初步准备。值得让人思考的是,随着深度学习的发展,神经网络被广泛应用于各种领域,模型性能的提高同时
【AI系统】推理引擎示例:AscendCL
AscendCL 作为华为 Ascend 系列 AI 处理器的软件开发框架,为用户提供了强大的编程支持。通过 AscendCL,开发者可以更加高效地进行 AI 应用的开发和优化,从而加速 AI 技术在
下一页