首页
AI Coding
数据标注
NEW
沸点
课程
直播
活动
APP
插件
搜索历史
清空
创作者中心
写文章
发沸点
写笔记
写代码
草稿箱
创作灵感
查看更多
登录
注册
确定删除此收藏集吗
删除后此收藏集将被移除
取消
确定删除
确定删除此文章吗
删除后此文章将被从当前收藏集中移除
取消
确定删除
编辑收藏集
名称:
描述:
0
/100
公开
当其他人关注此收藏集后不可再更改为隐私
隐私
仅自己可见此收藏集
取消
确定
计算机视觉
订阅
用户807901024781
更多收藏集
微信扫码分享
微信
新浪微博
QQ
7篇文章 · 0订阅
YOLO系列梳理(三)YOLOv5
前言 YOLOv5 是在 YOLOv4 出来之后没多久就横空出世了。今天笔者介绍一下 YOLOv5 的相关知识。目前 YOLOv5 发布了新的版本,6.0版本。在这里,YOLOv5 也在5.0基础上
NMS技术总结(NMS原理、多类别NMS、NMS的缺陷、NMS的改进思路、各种NMS方法)
欢迎关注公众号CV技术指南,专注于计算机视觉的技术总结、最新技术跟踪、经典论文解读、CV招聘信息。 Non-Maximum Suppression(NMS)非极大值抑制。从字面意思理解,抑制那些非极大
深度学习与计算机视觉教程(1) | 引言与知识基础(CV通关指南·完结🎉)
本文讲解了斯坦福大学 CS231n 课程的内容框架(深度学习 + 卷积神经网络 + 计算机视觉应用)和学习基础,帮助了解计算机视觉的历史和技术发展【对应 CS231n Lecture 1】
【目标检测(十)】RetinaNet详解——Focal Loss将one-stage算法推向巅峰
目标检测领域普遍one-stage算法准确率不如以Faster RCNN为代表的two-stage算法。RetinaNet认为主要原因是样本不均衡,提出了focal loss来解决这个问题。
yolo原理系列——yolov1--yolov5详细解释
yolo系列原理 先唠唠 这部分主要讲述yolo系列各个版本的的原理,这部分会把yolov1到yolov5的原理进行详细的阐述。首先我们先来看深度学习的两种经典的检测方法: Two-stag
深度学习与计算机视觉教程(10) | 轻量化CNN架构 (SqueezeNet,ShuffleNet,MobileNet等)(CV通关指南·完结🎉)
本文讲解了神经网络参数与复杂度计算,以及主流轻量级网络,包括SqueezeNet、Xception、ShuffleNet v1~v2、MobileNet v1~v3等
ShuffleNet系列之ShuffleNet_v2
导言: 目前一些网络模型如MobileNet_v1, v2,ShuffleNet_v1, Xception采用了分组卷积,深度可分离卷积等操作,这些操作在一定程度上大大减少了FLOPs,但FLOPs并