首页
AI Coding
数据标注
NEW
沸点
课程
直播
活动
APP
插件
搜索历史
清空
创作者中心
写文章
发沸点
写笔记
写代码
草稿箱
创作灵感
查看更多
登录
注册
确定删除此收藏集吗
删除后此收藏集将被移除
取消
确定删除
确定删除此文章吗
删除后此文章将被从当前收藏集中移除
取消
确定删除
编辑收藏集
名称:
描述:
0
/100
公开
当其他人关注此收藏集后不可再更改为隐私
隐私
仅自己可见此收藏集
取消
确定
算法
订阅
机器不学习
更多收藏集
微信扫码分享
微信
新浪微博
QQ
5篇文章 · 0订阅
实时特征框架的生产实践|得物技术
高效的实时推荐系统必须能够持续更新用户和物品的特征,以实时捕捉和反映它们的最新行为和兴趣变化。在这个过程中,实时特征的准确性和稳定性变得至关重要,它们直接影响到推荐系统在生产环境中的效果表现。
得物技术多兴趣召回模型实践
MIND多兴趣召回在实践过程中,经过离线和实时两个阶段去执行最终落地,中间的步骤因此记录下来,希望他人在阅读到此文能够有所收获。
得物社区推荐精排模型演进
1.背景 得物社区是一大批年轻人获取潮流信息、分享日常生活的潮流生活社区。其中用户浏览的信息,进行个性化的分发,是由推荐系统来决策完成的。目前得物社区多个场景接入了推荐算法,包括首页推荐双列流、沉浸式
海纳“千川”:得物多场景统一推荐平台|精选
得物的推荐场景,除了首页瀑布流等几个比较大的场景之外,还有很多长尾的小场景,包括:频道、会场、购中购后场景、品牌墙等。这类场景存在单个场景体量小(UV和GMV均偏小)、场景零散、类型多元的情况。
面试时写不出排序算法?看这篇就够了。
冒泡排序是一种交换排序。 它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。 这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端,故名。 假设有一个大小为 …