首页
AI Coding
数据标注
NEW
沸点
课程
直播
活动
APP
插件
搜索历史
清空
创作者中心
写文章
发沸点
写笔记
写代码
草稿箱
创作灵感
查看更多
登录
注册
彼岸花开了吗
掘友等级
获得徽章 0
动态
文章
专栏
沸点
收藏集
关注
作品
赞
0
文章 0
沸点 0
赞
0
返回
|
搜索文章
最新
热门
构建AI智能体:八十九、Encoder-only与Decoder-only模型架构:基于ModelScope小模型的实践解析
本文深入探讨了大模型中的Encoder-only和Decoder-only两种主流架构。Encoder-only(如BERT)采用双向注意力机制,擅长文本理解任务,如分类、问答和情感分析,能同时分析整
构建AI智能体:八十八、大模型编辑:从一本百科全书到可修订的活页本
大模型编辑技术为解决传统语言模型知识固化问题提供了创新方案。该技术通过局部修改、内存增强和外部知识库三种方法实现精准知识更新:局部修改直接调整模型权重;内存增强添加外部记忆模块;外部知识库则结合检索机
构建AI智能体:八十七、KM与Chinchilla法则:AI模型发展的两种训练法则完全解析
摘要: 大模型训练中,如何在有限计算预算(C≈6ND)下最优分配模型参数量(N)与训练数据量(D)是关键挑战。KM扩展法则主张“模型优先”,认为增大N的收益高于D(α=0.076<β=0.103),推
构建AI智能体:八十六、大模型的指令微调与人类对齐:从知识渊博到善解人意
本文探讨了大模型从知识储备到实用助手的进化过程。首先分析了原始预训练模型存在的问题:擅长文本补全但缺乏指令理解能力,可能生成有害或无关内容。然后详细介绍了指令微调技术,通过高质量(指令-输出)数据集教
构建AI智能体:八十五、数据预处理对训练效果的影响:质量过滤、敏感内容过滤与数据去重
摘要:数据预处理是大语言模型训练的关键环节,通过质量过滤、敏感内容过滤和数据去重三重机制显著提升模型性能。质量过滤确保文本规范性和信息密度,敏感内容过滤阻断有害信息,数据去重优化知识分布。实验表明,预
构建AI智能体:八十四、大模型涌现能力的解构分析:从量变到质变的神秘跃迁
大模型涌现能力的出现标志着人工智能发展的一个重要转折点。这些能力不是通过专门编程获得的,而是模型规模达到临界点时自然产生的质变。这种现象不仅证明了规模在人工智能发展中的关键作用,也为我们理解智能的本质
构建AI智能体:八十三、当AI开始“失忆“:深入理解和预防模型衰老与数据漂移
你训练了一个很聪明的AI助手,但它会像人一样变老,刚开始时它很懂你,但时间久了,它的知识就过时了,这就是模型衰老。因为世界在变!用户行为、市场环境、产品功能都在变化,导致输入数据的样子和含义都变了,这
构建AI智能体:八十二、潜藏秩序的发现:隐因子视角下的SVD推荐知识提取与机理阐释
隐因子是我们为了理解复杂世界而构建的思维脚手架。它们是从嘈杂、稀疏的用户行为数据中提炼出的本质特征,SVD将难以理解的协同过滤转化为基于隐因子的可解释模型,通过多层次知识提取,微观层面理解单个用户偏好
构建AI智能体:八十一、SVD模型压缩的艺术:如何科学选择K值实现最佳性能
本文探讨了SVD(奇异值分解)在深度学习模型压缩中的应用。随着模型规模不断扩大,面临的存储、计算和能耗问题日益突出。SVD通过将大型矩阵分解为三个特殊矩阵(U、Σ、Vᵀ),并根据奇异值大小进行截断,实
构建AI智能体:八十、SVD知识整理与降维:从数据混沌到语义秩序的智能转换
本文探讨了SVD(奇异值分解)在知识整理与降维中的应用。针对文本数据的高维稀疏性问题,SVD通过矩阵分解自动识别潜在主题和语义关系,实现从词袋到语义理解的转变。核心优势包括:1)自动发现无标签数据中的
下一页
个人成就
文章被点赞
1
文章被阅读
4,202
掘力值
1,132
关注了
0
关注者
8
收藏集
0
关注标签
7
加入于
2025-08-30