首页
AI Coding
数据标注
NEW
沸点
课程
直播
活动
APP
插件
搜索历史
清空
创作者中心
写文章
发沸点
写笔记
写代码
草稿箱
创作灵感
查看更多
登录
注册
coologic
掘友等级
Dev
获得徽章 0
动态
文章
专栏
沸点
收藏集
关注
作品
赞
0
文章 0
沸点 0
赞
0
返回
|
搜索文章
最新
热门
报表自动化: 事实、维度与指标的三方会谈
前面的《报表自动化: 没有压力的维度建模》以及《报表自动化: 薅出数字背后的价值》两篇文章分别提及了维度建模中的事实、维度,以及指标三种表,那么他们之间具体有什么关系呢?前面都零星提到了一些,现在让我们来具象化的了解一下这个关系。 先来展示一种在流程上来说简单的依赖方式,这种方…
报表自动化: 薅出数字背后的价值
前面的文章我们讲了一种简易的数仓分层设计,然后聊了聊在数仓 DW 层可以使用的维度建模方法,现在我们有了一堆建模完成的数据,但实际上这些数据只是进行了从 OBS 层的“收集”走到了 DW 的“整理”,也就是我们大部分的数据还是业务系统已有的内容,并没有让数据产生更多的价值,让我…
报表自动化: 抓住时间流逝的瞬间
前面《报表自动化: 没有压力的维度建模》以超市的一个订单为例简单讲述了维度建模中事实表与维度表的概念,这一篇主要讲一讲维度里面的时间维度这个特殊的数据内容。 为什么说时间维度特殊呢?比如说商品的分类:蔬菜、水果、饮品、小家电……很多种分类,但这个分类的数量有限且不是很多,但是对…
报表自动化: 没有压力的维度建模
前面《报表自动化: 打开数据仓库的大门》提到了数仓分为了多个层次,其中 DW 层有多种建模方式,本文主要讲 维度建模 的方法,当然相关理论文章很多很多了,这篇文章主要是为了串一下流程,并不会详细的展开每一步的细节。 再开始聊维度之前,先让我们理解一下“度量”这个关键词,到底什么…
报表自动化: 打开数据仓库的大门
上文《报表自动化: 商业智能背后的秘密》主要讲了我认为的如何逐步做到商业智能,通过报表自动化、数据图表化、数据可视化、数据挖掘四步走的方式,逐步的让数据产生价值。 我们主要讲报表自动化,但在这之前我们需要有“大量的数据”支持,多次提到“大量的数据”,这些数据就是指我们各种产品在…
个人成就
文章被阅读
1,411
掘力值
61
关注了
0
关注者
1
收藏集
0
关注标签
1
加入于
2020-02-08