基于Qlearning强化学习的机器人迷宫路线搜索算法matlab仿真

7 阅读4分钟

1.算法仿真效果

matlab2022a仿真结果如下(完整代码运行后无水印):

 

1.jpeg

2.jpeg

3.jpeg

4.jpeg

 

仿真操作步骤可参考程序配套的操作视频。

 

2.算法涉及理论知识概要

2.1 Q-learning理论

       强化学习旨在解决智能体(在本文中为机器人)如何在环境中采取一系列行动,以最大化累积奖励的问题。其核心要素包括:

 

智能体(Agent):执行动作的主体,如迷宫中的机器人,它能够感知环境状态并做出决策。

 

环境(Environment):智能体所处的外部世界,对于机器人迷宫问题,环境就是迷宫本身,包括墙壁、通道、起点和终点等布局,环境状态会因智能体的动作而发生改变。

 

状态(State):智能体对环境的感知描述,在迷宫场景下,机器人所在的位置坐标、周围是否有墙壁阻挡等信息构成了当前状态。例如,将迷宫划分为一个个网格单元,机器人位于某个网格单元时,该单元的标识以及相邻单元的可通行情况就是状态的一部分。

 

动作(Action):智能体能够采取的行为,在迷宫中机器人通常可以执行向上、向下、向左、向右移动等基本动作,不同动作会使机器人从当前状态转移到下一个可能的状态。

 

奖励(Reward):环境反馈给智能体的信号,用于评价智能体所采取动作的好坏。在迷宫搜索任务中,如果机器人朝着终点前进,可能会获得正向奖励;若撞到墙壁,则会得到负向奖励,如撞到墙壁给予 -1 奖励,每向终点靠近一步给予 +1 奖励,到达终点给予 +10 奖励等。

 

       Q-learning 的关键在于构建一个 Q 表(Q-table),它存储了智能体在每个状态下采取每个动作的预期长期奖励值,用数学公式表示为:Q(s,a),其中s表示状态,a表示动作。

 

       智能体的目标是通过不断学习,使得 Q 表中的值能够准确反映不同状态 - 动作对的优劣,从而依据 Q 表做出最优决策。Q-learning 的学习过程基于著名的贝尔曼方程(Bellman Equation)的迭代更新。

 

8fa53a2cc18f2bfa1f5eaeab09a3a071_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

 

2.2 机器人迷宫路线搜索具体实现

       首先,将迷宫抽象为一个二维网格世界,每个网格单元代表一个状态。例如,一个MN的迷宫,有MN个可能的状态。用 0 表示可通行的通道,1 表示墙壁等障碍物。同时,定义机器人的初始位置为起点状态 ,迷宫中的目标位置为终点状态Sgoal。

 

5863e23ed51d65b6900e8b5e8979ffac_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

 

       经过多轮训练后,Q 表已经学习到了不同状态下较优的动作策略。在实际路线搜索时,将机器人置于起点状态,然后在每一个状态下,直接选择 Q 值最大的动作(即采用贪婪策略,不再有探索概率 ),机器人按照选择的动作依次移动,直至到达终点,所经过的路径即为搜索到的最优路线(在 Q 表学习足够好的情况下,近似最优)。

 

3.MATLAB核心程序 `Rwd_all     = [];

Q2_all      = [];

for i=1:Episodes    

    i

    [total_reward,Q,Model,Info,Q2]= func_episode(Q,Model,Miters) ;

    Rwd_all= [Rwd_all,total_reward];

    Q2_all = [Q2_all,mean(Q2)];

 

end

 

figure;

plot(Rwd_all,'b-o');

xlabel('训练次数');

ylabel('累计奖励值');

 

figure;

plot(Q2_all,'b-o');

xlabel('训练次数');

ylabel('Q值');

 

 

 

 

[x]=Info{1};

[Maps2]=Info{2};

[Mapsv2]=Info{3};

[Q]=Info{4};

 

 

 

[N,M] = size(Maps2);

 

 

figure;

[Rms,Cms] = find(Maps2);

plot(Rms-0.5,Cms-0.5,'s','MarkerEdgeColor', '#29292a' ,'MarkerFaceColor','#535353','MarkerSize',12);

hold on;

xlim(gca,[0 N]);

ylim(gca,[0 M]);

box(gca,'on');

axis equal

plot(XY0(1)+0.5,XY0(2)+0.5,'og','MarkerFaceColor','g','MarkerSize',8);

plot(x(1)+0.5,x(2)+0.5,'sr','MarkerFaceColor','r','MarkerSize',8);

hold off;

 

 

figure;

[Rms,Cms] = find(Maps2);

plot(Rms-0.5,Cms-0.5,'s','MarkerEdgeColor', '#29292a' ,'MarkerFaceColor','#535353','MarkerSize',12);

hold on;

xlim(gca,[0 N]);

ylim(gca,[0 M]);

box(gca,'on');

axis equal

plot(XY0(1)+0.5,XY0(2)+0.5,'og','MarkerFaceColor','g','MarkerSize',8);

plot(x(1)+0.5,x(2)+0.5,'sr','MarkerFaceColor','r','MarkerSize',8);

[mx,my] = find(Mapsv2);

plot(mx-0.5,my-0.5,'o','MarkerEdgeColor', '#d35400' ,'MarkerFaceColor',' #f39c12 ','MarkerSize',8);

hold off;

0Z_013m`