JavaScript 中使用 Elasticsearch 的正确方式,第一部分

0 阅读16分钟

作者:来自 Elastic  Jeffrey Rengifo

讲解如何用 JavaScript 创建一个可用于生产环境的 Elasticsearch 后端。

想获得 Elastic 认证?看看下一期 Elasticsearch 工程师培训什么时候开始吧!

Elasticsearch 拥有大量新功能,能帮助你为你的使用场景构建最佳搜索解决方案。深入了解我们的示例笔记本、开始免费的云端试用,或者立即在本地机器上尝试 Elastic。


这是一个系列文章的第一篇,讲解如何在 JavaScript 中使用 Elasticsearch。在这个系列中,你将学习在 JavaScript 环境中使用 Elasticsearch 的基础知识,并了解创建搜索应用时最相关的功能和最佳实践。到最后,你将掌握使用 JavaScript 运行 Elasticsearch 所需的一切。

在第一部分中,我们将介绍:

  • 环境设置
    • 前端、后端还是无服务器架构?
    • 连接客户端
  • 文档索引
    • Elasticsearch 客户端
    • 语义映射
    • 批量助手
  • 数据搜索
    • 词法查询
    • 语义查询
    • 混合查询

你可以在这里查看包含示例的源代码。

什么是 Elasticsearch Node.js 客户端?

Elasticsearch Node.js 客户端是一个 JavaScript 库,它将 Elasticsearch API 的 HTTP REST 调用封装成 JavaScript,使处理变得更简单,还提供了一些助手功能,方便执行像批量索引文档这样的任务。

更多阅读,请参阅文章 “Elasticsearch:使用最新的 Nodejs client 8.x 来创建索引并搜索”。

环境

前端、后端,还是无服务器?

为了使用 JavaScript 客户端创建搜索应用,我们至少需要两个组件:一个 Elasticsearch 集群和一个运行客户端的 JavaScript 运行时。

JavaScript 客户端支持所有 Elasticsearch 解决方案(云端、本地部署和无服务器),它在内部处理了各种差异,因此你不需要担心使用哪一种。

不过,JavaScript 运行时必须运行在服务器上,不能直接在浏览器中运行。

这是因为如果从浏览器直接调用 Elasticsearch,用户可能会获取敏感信息,比如集群的 API 密钥、主机地址或查询本身。Elasticsearch 建议绝不要将集群直接暴露在互联网上,而是使用一个中间层来屏蔽这些信息,让用户只能看到参数。你可以在这里阅读更多相关内容。

我们建议使用这样的架构:

在这种情况下,客户端只会发送搜索词和一个用于你服务器的认证密钥,而你的服务器将完全控制查询内容以及与 Elasticsearch 的通信。

连接客户端

首先按照这些步骤创建一个 API 密钥。

根据前面的示例,我们将创建一个简单的 Express 服务器,并通过一个 Node.js 服务器中的客户端与它连接。

我们将使用 NPM 初始化项目,并安装 Elasticsearch 客户端和 Express。Express 是一个在 Node.js 中搭建服务器的库。通过使用 Express,我们可以通过 HTTP 与后端进行交互。

让我们来初始化项目:

`npm init -y`AI写代码

安装依赖项:

`npm install @elastic/elasticsearch express split2 dotenv`AI写代码

让我为你拆解说明:

  • [@elastic/elasticsearch](https://www.npmjs.com/package/@elastic/elasticsearch "@elastic/elasticsearch"):这是官方的 Node.js 客户端

  • [express](https://www.npmjs.com/package/express "express"):允许我们快速搭建一个轻量级的 Node.js 服务器,用来暴露 Elasticsearch

  • [split2](https://www.npmjs.com/package/split2 "split2"):将文本按行拆分成流,便于我们逐行处理 ndjson 文件

  • [dotenv](https://www.npmjs.com/package/dotenv "dotenv"):允许我们通过 .env 文件管理环境变量

在项目根目录创建一个 .env 文件,并添加以下内容:

`

1.  ELASTICSEARCH_ENDPOINT="Your Elasticsearch endpoint"
2.  ELASTICSEARCH_API_KEY="Your Elasticssearch API"

`AI写代码

这样,我们可以使用 dotenv 包导入这些变量。

创建一个 server.js 文件:

`

1.  const express = require("express");
2.  const bodyParser = require("body-parser");
3.  const { Client } = require("@elastic/elasticsearch");

5.  require("dotenv").config(); //environment variables setup

7.  const ELASTICSEARCH_ENDPOINT = process.env.ELASTICSEARCH_ENDPOINT;
8.  const ELASTICSEARCH_API_KEY = process.env.ELASTICSEARCH_API_KEY;
9.  const PORT = 3000;

12.  const app = express();

14.  app.listen(PORT, () => {
15.    console.log("Server running on port", PORT);
16.  });
17.  app.use(bodyParser.json());

20.  let esClient = new Client({
21.    node: ELASTICSEARCH_ENDPOINT,
22.    auth: { apiKey: ELASTICSEARCH_API_KEY },  
23.  });

25.  app.get("/ping", async (req, res) => {
26.    try {
27.      const result = await esClient.info();

29.      res.status(200).json({
30.        success: true,
31.        clusterInfo: result,
32.      });
33.    } catch (error) {
34.      console.error("Error getting Elasticsearch info:", error);

36.      res.status(500).json({
37.        success: false,
38.        clusterInfo: null,
39.        error: error.message,
40.      });
41.    }
42.  });

`AI写代码

这段代码搭建了一个基础的 Express.js 服务器,监听 3000 端口,并使用 API 密钥连接到 Elasticsearch 集群进行认证。它包含一个 /ping 端点,通过 GET 请求访问时,会使用 Elasticsearch 客户端的 .info() 方法查询集群的基本信息。

如果查询成功,会以 JSON 格式返回集群信息;否则返回错误信息。服务器还使用了 body-parser 中间件来处理 JSON 请求体。

运行该文件启动服务器:

`node server.js`AI写代码

答案应该是这样的:

`Server running on port 3000`AI写代码

现在,让我们访问 /ping 端点来检查 Elasticsearch 集群的状态。

`

1.  curl http://localhost:3000/ping
2.  {
3.      "success": true,
4.      "clusterInfo": {
5.          "name": "instance-0000000000",
6.          "cluster_name": "61b7e19eec204d59855f5e019acd2689",
7.          "cluster_uuid": "BIfvfLM0RJWRK_bDCY5ldg",
8.          "version": {
9.              "number": "9.0.0",
10.              "build_flavor": "default",
11.              "build_type": "docker",
12.              "build_hash": "112859b85d50de2a7e63f73c8fc70b99eea24291",
13.              "build_date": "2025-04-08T15:13:46.049795831Z",
14.              "build_snapshot": false,
15.              "lucene_version": "10.1.0",
16.              "minimum_wire_compatibility_version": "8.18.0",
17.              "minimum_index_compatibility_version": "8.0.0"
18.          },
19.          "tagline": "You Know, for Search"
20.      }
21.  }

`AI写代码

索引文档

连接成功后,我们可以使用像 semantic_text(语义搜索)和 text(全文查询)这样的映射来索引文档。通过这两种字段类型,我们还可以进行混合搜索(hybrid search)。

我们将创建一个新的 load.js 文件来生成映射并上传文档。

Elasticsearch 客户端

我们首先需要实例化并认证客户端:

`

1.  const { Client } = require("@elastic/elasticsearch");

3.  const ELASTICSEARCH_ENDPOINT = "cluster/project_endpoint";
4.  const ELASTICSEARCH_API_KEY = "apiKey";

6.  const esClient = new Client({
7.    node: ELASTICSEARCH_ENDPOINT,
8.    auth: { apiKey: ELASTICSEARCH_API_KEY },
9.  });

`AI写代码

语义映射 - semantic mappings

我们将创建一个包含兽医医院数据的索引。存储的信息包括主人、宠物和就诊详情。

需要进行全文搜索的数据,如姓名和描述,将存为 text 类型。类别数据,如动物的种类或品种,将存为 keyword 类型。

此外,我们会将所有字段的值复制到一个 semantic_text 字段,以便也能针对这些信息进行语义搜索。

`

1.  const INDEX_NAME = "vet-visits";

3.  const createMappings = async (indexName, mapping) => {
4.    try {
5.      const body = await esClient.indices.create({
6.        index: indexName,
7.        body: {
8.          mappings: mapping,
9.        },
10.      });

12.      console.log("Index created successfully:", body);
13.    } catch (error) {
14.      console.error("Error creating mapping:", error);
15.    }
16.  };

18.  await createMappings(INDEX_NAME, {
19.    properties: {
20.      owner_name: {
21.        type: "text",
22.        copy_to: "semantic_field",
23.      },
24.      pet_name: {
25.        type: "text",
26.        copy_to: "semantic_field",
27.      },
28.      species: {
29.        type: "keyword",
30.        copy_to: "semantic_field",
31.      },
32.      breed: {
33.        type: "keyword",
34.        copy_to: "semantic_field",
35.      },
36.      vaccination_history: {
37.        type: "keyword",
38.        copy_to: "semantic_field",
39.      },
40.      visit_details: {
41.        type: "text",
42.        copy_to: "semantic_field",
43.      },
44.      semantic_field: {
45.        type: "semantic_text",
46.      },
47.    },
48.  });

`AI写代码

批量助手 - bulk helper

客户端的另一个优势是可以使用批量助手(bulk helper)批量索引。批量助手方便处理并发、重试以及每个文档成功或失败时的处理方式。

这个助手的一个吸引人功能是支持流式处理。它允许你逐行发送文件,而不是将整个文件存入内存后一次性发送给 Elasticsearch。

要上传数据到 Elasticsearch,请在项目根目录创建一个名为 data.ndjson 的文件,并添加以下信息(或者,你也可以从这里下载包含数据集的文件):

`

1.  {"owner_name":"Alice Johnson","pet_name":"Buddy","species":"Dog","breed":"Golden Retriever","vaccination_history":["Rabies","Parvovirus","Distemper"],"visit_details":"Annual check-up and nail trimming. Healthy and active."}
2.  {"owner_name":"Marco Rivera","pet_name":"Milo","species":"Cat","breed":"Siamese","vaccination_history":["Rabies","Feline Leukemia"],"visit_details":"Slight eye irritation, prescribed eye drops."}
3.  {"owner_name":"Sandra Lee","pet_name":"Pickles","species":"Guinea Pig","breed":"Mixed","vaccination_history":[],"visit_details":"Loss of appetite, recommended dietary changes."}
4.  {"owner_name":"Jake Thompson","pet_name":"Luna","species":"Dog","breed":"Labrador Mix","vaccination_history":["Rabies","Bordetella"],"visit_details":"Mild ear infection, cleaning and antibiotics given."}
5.  {"owner_name":"Emily Chen","pet_name":"Ziggy","species":"Cat","breed":"Mixed","vaccination_history":["Rabies","Feline Calicivirus"],"visit_details":"Vaccination update and routine physical."}
6.  {"owner_name":"Tomás Herrera","pet_name":"Rex","species":"Dog","breed":"German Shepherd","vaccination_history":["Rabies","Parvovirus","Leptospirosis"],"visit_details":"Follow-up for previous leg strain, improving well."}
7.  {"owner_name":"Nina Park","pet_name":"Coco","species":"Ferret","breed":"Mixed","vaccination_history":["Rabies"],"visit_details":"Slight weight loss; advised new diet."}
8.  {"owner_name":"Leo Martínez","pet_name":"Simba","species":"Cat","breed":"Maine Coon","vaccination_history":["Rabies","Feline Panleukopenia"],"visit_details":"Dental cleaning. Minor tartar buildup removed."}
9.  {"owner_name":"Rachel Green","pet_name":"Rocky","species":"Dog","breed":"Bulldog Mix","vaccination_history":["Rabies","Parvovirus"],"visit_details":"Skin rash, antihistamines prescribed."}
10.  {"owner_name":"Daniel Kim","pet_name":"Mochi","species":"Rabbit","breed":"Mixed","vaccination_history":[],"visit_details":"Nail trimming and general health check. No issues."}

`AI写代码

我们使用 split2 来流式读取文件的每一行,同时批量助手将它们发送到 Elasticsearch。

``

1.  const { createReadStream } = require("fs");
2.  const split = require("split2");

4.  const indexData = async (filePath, indexName) => {
5.    try {
6.      console.log(`Indexing data from ${filePath} into ${indexName}...`);

8.      const result = await esClient.helpers.bulk({
9.        datasource: createReadStream(filePath).pipe(split()),

11.        onDocument: () => {
12.          return {
13.            index: { _index: indexName },
14.          };
15.        },
16.        onDrop(doc) {
17.          console.error("Error processing document:", doc);
18.        },
19.      });

21.      console.log("Bulk indexing successful elements:", result.items.length);
22.    } catch (error) {
23.      console.error("Error indexing data:", error);
24.      throw error;
25.    }
26.  };

28.  await indexData("./data.ndjson", INDEX_NAME);

``AI写代码

上面的代码逐行读取 .ndjson 文件,并使用 helpers.bulk 方法批量将每个 JSON 对象索引到指定的 Elasticsearch 索引中。它通过 createReadStream 和 split2 流式读取文件,为每个文档设置索引元数据,并记录处理失败的文档。完成后,会输出成功索引的条目数量。

除了使用 indexData 函数,你也可以通过 Kibana 的 UI 直接上传文件,使用上传数据文件的界面

我们运行该文件,将文档上传到 Elasticsearch 集群。

node load.js

`

1.  Creating mappings for index vet-visits...
2.  Index created successfully: { acknowledged: true, shards_acknowledged: true, index: 'vet-visits' }
3.  Indexing data from ./data.ndjson into vet-visits...
4.  Bulk indexing completed. Total documents: 10, Failed: 0

`AI写代码

搜索数据

回到我们的 server.js 文件,我们将创建不同的端点来执行词法搜索、语义搜索或混合搜索。

简而言之,这些搜索类型不是互斥的,而是取决于你需要回答的问题类型。

Query typeUse caseExample question
词汇搜索

问题中的词或词根很可能出现在索引文档中。问题和文档之间的词元相似度。

I’m looking for a blue sport t-shirt.
语义搜索

问题中的词不太可能出现在文档中。问题和文档之间的概念相似度。

I’m looking for clothing for cold weather.
混合搜索

问题包含词法和/或语义成分。问题和文档之间的词元相似度和语义相似度。

I’m looking for an S size dress for a beach wedding.

问题的词汇部分很可能是标题、描述或类别名称的一部分,而语义部分是与这些字段相关的概念。Blue 很可能是类别名称或描述的一部分,而 beach wedding 可能不是,但可以与 linen clothing 在语义上相关。

Lexical query (/search/lexic?q=<query_term>)

词法搜索,也叫全文搜索,指的是基于词元相似度的搜索;也就是说,经过分析后,包含搜索词元的文档会被返回。

你可以在这里查看我们的词法搜索实操教程。

`

1.  app.get("/search/lexic", async (req, res) => {
2.    const { q } = req.query;

4.    const INDEX_NAME = "vet-visits";

6.    try {
7.      const result = await esClient.search({
8.        index: INDEX_NAME,
9.        size: 5,
10.        body: {
11.          query: {
12.            multi_match: {
13.              query: q,
14.              fields: ["owner_name", "pet_name", "visit_details"],
15.            },
16.          },
17.        },
18.      });

20.      res.status(200).json({
21.        success: true,
22.        results: result.hits.hits
23.      });
24.    } catch (error) {
25.      console.error("Error performing search:", error);

27.      res.status(500).json({
28.        success: false,
29.        results: null,
30.        error: error.message,
31.      });
32.    }
33.  });

`AI写代码

我们用 “nail trimming” 测试。

`curl http://localhost:3000/search/lexic?q=nail%20trimming`AI写代码

答案:

`

1.  {
2.      "success": true,
3.      "results": [
4.          {
5.              "_index": "vet-visits",
6.              "_id": "-RY6RJYBLe2GoFQ6-9n9",
7.              "_score": 2.7075968,
8.              "_source": {
9.                  "pet_name": "Mochi",
10.                  "owner_name": "Daniel Kim",
11.                  "species": "Rabbit",
12.                  "visit_details": "Nail trimming and general health check. No issues.",
13.                  "breed": "Mixed",
14.                  "vaccination_history": []
15.              }
16.          },
17.          {
18.              "_index": "vet-visits",
19.              "_id": "8BY6RJYBLe2GoFQ6-9n9",
20.              "_score": 2.560356,
21.              "_source": {
22.                  "pet_name": "Buddy",
23.                  "owner_name": "Alice Johnson",
24.                  "species": "Dog",
25.                  "visit_details": "Annual check-up and nail trimming. Healthy and active.",
26.                  "breed": "Golden Retriever",
27.                  "vaccination_history": [
28.                      "Rabies",
29.                      "Parvovirus",
30.                      "Distemper"
31.                  ]
32.              }
33.          }
34.      ]
35.  }

`AI写代码

Semantic query (/search/semantic?q=<query_term>)

语义搜索不同于词法搜索,它通过向量搜索找到与搜索词含义相似的结果。

你可以在这里查看我们的语义搜索实操教程。

`

1.  app.get("/search/semantic", async (req, res) => {
2.    const { q } = req.query;

4.    const INDEX_NAME = "vet-visits";

6.    try {
7.      const result = await esClient.search({
8.        index: INDEX_NAME,
9.        size: 5,
10.        body: {
11.          query: {
12.            semantic: {
13.              field: "semantic_field",
14.              query: q
15.            },
16.          },
17.        },
18.      });

20.      res.status(200).json({
21.        success: true,
22.        results: result.hits.hits,
23.      });
24.    } catch (error) {
25.      console.error("Error performing search:", error);

27.      res.status(500).json({
28.        success: false,
29.        results: null,
30.        error: error.message,
31.      });
32.    }
33.  });

`AI写代码

我们用 “Who got a pedicure?” 测试。

`curl http://localhost:3000/search/semantic?q=Who%20got%20a%20pedicure?`AI写代码

答案:

`

1.  {
2.      "success": true,
3.      "results": [
4.          {
5.              "_index": "vet-visits",
6.              "_id": "-RY6RJYBLe2GoFQ6-9n9",
7.              "_score": 4.861466,
8.              "_source": {
9.                  "owner_name": "Daniel Kim",
10.                  "pet_name": "Mochi",
11.                  "species": "Rabbit",
12.                  "breed": "Mixed",
13.                  "vaccination_history": [],
14.                  "visit_details": "Nail trimming and general health check. No issues."
15.              }
16.          },
17.          {
18.              "_index": "vet-visits",
19.              "_id": "8BY6RJYBLe2GoFQ6-9n9",
20.              "_score": 4.7152824,
21.              "_source": {
22.                  "pet_name": "Buddy",
23.                  "owner_name": "Alice Johnson",
24.                  "species": "Dog",
25.                  "visit_details": "Annual check-up and nail trimming. Healthy and active.",
26.                  "breed": "Golden Retriever",
27.                  "vaccination_history": [
28.                      "Rabies",
29.                      "Parvovirus",
30.                      "Distemper"
31.                  ]
32.              }
33.          },
34.          {
35.              "_index": "vet-visits",
36.              "_id": "9RY6RJYBLe2GoFQ6-9n9",
37.              "_score": 1.6717153,
38.              "_source": {
39.                  "pet_name": "Rex",
40.                  "owner_name": "Tomás Herrera",
41.                  "species": "Dog",
42.                  "visit_details": "Follow-up for previous leg strain, improving well.",
43.                  "breed": "German Shepherd",
44.                  "vaccination_history": [
45.                      "Rabies",
46.                      "Parvovirus",
47.                      "Leptospirosis"
48.                  ]
49.              }
50.          },
51.          {
52.              "_index": "vet-visits",
53.              "_id": "9xY6RJYBLe2GoFQ6-9n9",
54.              "_score": 1.5600781,
55.              "_source": {
56.                  "pet_name": "Simba",
57.                  "owner_name": "Leo Martínez",
58.                  "species": "Cat",
59.                  "visit_details": "Dental cleaning. Minor tartar buildup removed.",
60.                  "breed": "Maine Coon",
61.                  "vaccination_history": [
62.                      "Rabies",
63.                      "Feline Panleukopenia"
64.                  ]
65.              }
66.          },
67.          {
68.              "_index": "vet-visits",
69.              "_id": "-BY6RJYBLe2GoFQ6-9n9",
70.              "_score": 1.2696637,
71.              "_source": {
72.                  "pet_name": "Rocky",
73.                  "owner_name": "Rachel Green",
74.                  "species": "Dog",
75.                  "visit_details": "Skin rash, antihistamines prescribed.",
76.                  "breed": "Bulldog Mix",
77.                  "vaccination_history": [
78.                      "Rabies",
79.                      "Parvovirus"
80.                  ]
81.              }
82.          }
83.      ]
84.  }

`AI写代码

Hybrid query (/search/hybrid?q=<query_term>)

混合搜索允许我们结合语义搜索和词法搜索,从而兼得两者优势:既有基于词元搜索的精准度,也有语义搜索的意义接近性。

`

1.  app.get("/search/hybrid", async (req, res) => {
2.    const { q } = req.query;

4.    const INDEX_NAME = "vet-visits";

6.    try {
7.      const result = await esClient.search({
8.        index: INDEX_NAME,
9.        body: {
10.          retriever: {
11.            rrf: {
12.              retrievers: [
13.                {
14.                  standard: {
15.                    query: {
16.                      bool: {
17.                        must: {
18.                           multi_match: {
19.               query: q,
20.              fields: ["owner_name", "pet_name", "visit_details"],
21.            },
22.                        },
23.                      },
24.                    },
25.                  },
26.                },
27.                {
28.                  standard: {
29.                    query: {
30.                      bool: {
31.                        must: {
32.                          semantic: {
33.                            field: "semantic_field",
34.                            query: q,
35.                          },
36.                        },
37.                      },
38.                    },
39.                  },
40.                },
41.              ],
42.            },
43.          },
44.          size: 5,
45.        },
46.      });

48.      res.status(200).json({
49.        success: true,
50.        results: result.hits.hits,
51.      });
52.    } catch (error) {
53.      console.error("Error performing search:", error);

55.      res.status(500).json({
56.        success: false,
57.        results: null,
58.        error: error.message,
59.      });
60.    }
61.  });

`AI写代码

我们用 “Who got a pedicure or dental treatment?” 测试。

`curl http://localhost:3000/search/hybrid?q=who%20got%20a%20pedicure%20or%20dental%20treatment`AI写代码

答案:

`

1.  {
2.      "success": true,
3.      "results": [
4.          {
5.              "_index": "vet-visits",
6.              "_id": "9xY6RJYBLe2GoFQ6-9n9",
7.              "_score": 0.032522473,
8.              "_source": {
9.                  "pet_name": "Simba",
10.                  "owner_name": "Leo Martínez",
11.                  "species": "Cat",
12.                  "visit_details": "Dental cleaning. Minor tartar buildup removed.",
13.                  "breed": "Maine Coon",
14.                  "vaccination_history": [
15.                      "Rabies",
16.                      "Feline Panleukopenia"
17.                  ]
18.              }
19.          },
20.          {
21.              "_index": "vet-visits",
22.              "_id": "-RY6RJYBLe2GoFQ6-9n9",
23.              "_score": 0.016393442,
24.              "_source": {
25.                  "pet_name": "Mochi",
26.                  "owner_name": "Daniel Kim",
27.                  "species": "Rabbit",
28.                  "visit_details": "Nail trimming and general health check. No issues.",
29.                  "breed": "Mixed",
30.                  "vaccination_history": []
31.              }
32.          },
33.          {
34.              "_index": "vet-visits",
35.              "_id": "8BY6RJYBLe2GoFQ6-9n9",
36.              "_score": 0.015873017,
37.              "_source": {
38.                  "pet_name": "Buddy",
39.                  "owner_name": "Alice Johnson",
40.                  "species": "Dog",
41.                  "visit_details": "Annual check-up and nail trimming. Healthy and active.",
42.                  "breed": "Golden Retriever",
43.                  "vaccination_history": [
44.                      "Rabies",
45.                      "Parvovirus",
46.                      "Distemper"
47.                  ]
48.              }
49.          },
50.          {
51.              "_index": "vet-visits",
52.              "_id": "9RY6RJYBLe2GoFQ6-9n9",
53.              "_score": 0.015625,
54.              "_source": {
55.                  "pet_name": "Rex",
56.                  "owner_name": "Tomás Herrera",
57.                  "species": "Dog",
58.                  "visit_details": "Follow-up for previous leg strain, improving well.",
59.                  "breed": "German Shepherd",
60.                  "vaccination_history": [
61.                      "Rabies",
62.                      "Parvovirus",
63.                      "Leptospirosis"
64.                  ]
65.              }
66.          },
67.          {
68.              "_index": "vet-visits",
69.              "_id": "8xY6RJYBLe2GoFQ6-9n9",
70.              "_score": 0.015384615,
71.              "_source": {
72.                  "pet_name": "Luna",
73.                  "owner_name": "Jake Thompson",
74.                  "species": "Dog",
75.                  "visit_details": "Mild ear infection, cleaning and antibiotics given.",
76.                  "breed": "Labrador Mix",
77.                  "vaccination_history": [
78.                      "Rabies",
79.                      "Bordetella"
80.                  ]
81.              }
82.          }
83.      ]
84.  }

`AI写代码

总结

在本系列的第一部分中,我们讲解了如何搭建环境并创建带有不同搜索端点的服务器,以按照客户端/服务器的最佳实践查询 Elasticsearch 文档。敬请期待第二部分,你将学习生产环境的最佳实践以及如何在无服务器环境中运行 Elasticsearch Node.js 客户端。

原文:www.elastic.co/search-labs…