01 背包问题

91 阅读19分钟

1.png

01 背包

有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。

这是标准的背包问题,以至于很多同学看了这个自然就会想到背包,甚至都不知道暴力的解法应该怎么解了。

这样其实是没有从底向上去思考,而是习惯性想到了背包,那么暴力的解法应该是怎么样的呢?

每一件物品其实只有两个状态,取或者不取,所以可以使用回溯法搜索出所有的情况,那么时间复杂度就是O(2^n),这里的n表示物品数量。

所以暴力的解法是指数级别的时间复杂度。进而才需要动态规划的解法来进行优化!

在下面的讲解中,我举一个例子:

背包最大重量为4。

物品为:

重量价值
物品0115
物品1320
物品2430

问背包能背的物品最大价值是多少?

二维dp数组01背包

依然动规五部曲分析一波。

1. 确定dp数组以及下标的含义

我们需要使用二维数组,为什么呢?

因为有两个维度需要分别表示:物品背包容量

如图,二维数组为 dp[i] [j]。

2.png

那么这里 i 、j、dp[i] [j] 分别表示什么呢?

i 来表示物品、j表示背包容量。

(如果想用j 表示物品,i 表示背包容量 行不行? 都可以的,个人习惯而已)

我们来尝试把上面的 二维表格填写一下。

动态规划的思路是根据子问题的求解推导出整体的最优解。

我们先看把物品0 放入背包的情况:

3.png

背包容量为0,放不下物品0,此时背包里的价值为0。

背包容量为1,可以放下物品0,此时背包里的价值为15.

背包容量为2,依然可以放下物品0 (注意 01背包里物品只有一个),此时背包里的价值为15。

以此类推。

再看把物品1 放入背包:

4.png

背包容量为 0,放不下物品0 或者物品1,此时背包里的价值为0。

背包容量为 1,只能放下物品0,背包里的价值为15。

背包容量为 2,只能放下物品0,背包里的价值为15。

背包容量为 3,上一行同一状态,背包只能放物品0,这次也可以选择物品1了,背包可以放物品1 或者 物品0,物品1价值更大,背包里的价值为20。

背包容量为 4,上一行同一状态,背包只能放物品0,这次也可以选择物品1了,背包可以放下物品0 和 物品1,背包价值为35。

以上举例,是比较容易看懂,我主要是通过这个例子,来帮助大家明确dp数组的含义。

上图中,我们看 dp[1] [4] 表示什么意思呢。

任取 物品0,物品1 放进容量为4的背包里,最大价值是 dp[1] [4]。

通过这个举例,我们来进一步明确dp数组的含义。

dp[i] [j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少

要时刻记着这个dp数组的含义,下面的一些步骤都围绕这dp数组的含义进行的,如果哪里看懵了,就来回顾一下i代表什么,j又代表什么。

2. 确定递推公式

这里在把基本信息给出来:

重量价值
物品0115
物品1320
物品2430

对于递推公式,首先我们要明确有哪些方向可以推导出 dp[i] [j]。

这里我们dp[1] [4]的状态来举例:

求取 dp[1] [4] 有两种情况:

  1. 放物品1
  2. 还是不放物品1

如果不放物品1, 那么背包的价值应该是 dp[0] [4] 即 容量为4的背包,只放物品0的情况。

推导方向如图:

5.png 如果放物品1, 那么背包要先留出物品1的容量,目前容量是4,物品1 的容量(就是物品1的重量)为3,此时背包剩下容量为1。

容量为1,只考虑放物品0 的最大价值是 dp[0] [1],这个值我们之前就计算过。

所以 放物品1 的情况 = dp[0] [1] + 物品1 的价值,推导方向如图:

6.png

两种情况,分别是放物品1 和 不放物品1,我们要取最大值(毕竟求的是最大价值)

dp[1][4] = max(dp[0][4], dp[0][1] + 物品1 的价值)

以上过程,抽象化如下:

  • 不放物品i:背包容量为j,里面不放物品i的最大价值是dp[i - 1] [j]。
  • 放物品i:背包空出物品i的容量后,背包容量为j - weight[i],dp[i - 1] [j - weight[i]] 为背包容量为j - weight[i]且不放物品i的最大价值,那么dp[i - 1] [j - weight[i]] + value[i] (物品i的价值),就是背包放物品i得到的最大价值

递归公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);

3. dp数组如何初始化

关于初始化,一定要和dp数组的定义吻合,否则到递推公式的时候就会越来越乱

首先从dp[i] [j]的定义出发,如果背包容量j为0的话,即dp[i] [0],无论是选取哪些物品,背包价值总和一定为0。如图:

7.png 在看其他情况。

状态转移方程 dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 可以看出i 是由 i-1 推导出来,那么i为0的时候就一定要初始化。

dp[0] [j],即:i为0,存放编号0的物品的时候,各个容量的背包所能存放的最大价值。

那么很明显当 j < weight[0]的时候,dp[0] [j] 应该是 0,因为背包容量比编号0的物品重量还小。

j >= weight[0]时,dp[0] [j] 应该是value[0],因为背包容量放足够放编号0物品。

代码初始化如下:

for (int i = 1; i < weight.size(); i++) {  // 当然这一步,如果把dp数组预先初始化为0了,这一步就可以省略,但很多同学应该没有想清楚这一点。
    dp[i][0] = 0;
}
// 正序遍历
for (int j = weight[0]; j <= bagweight; j++) {
    dp[0][j] = value[0];
}

此时dp数组初始化情况如图所示:

8.png

dp[0] [j] 和 dp[i] [0] 都已经初始化了,那么其他下标应该初始化多少呢?

其实从递归公式: dp[i][j] = max(dp[i - 1] [j], dp[i - 1] [j - weight[i]] + value[i]); 可以看出dp[i] [j] 是由左上方数值推导出来了,那么 其他下标初始为什么数值都可以,因为都会被覆盖。

初始-1,初始-2,初始100,都可以!

但只不过一开始就统一把dp数组统一初始为0,更方便一些。

如图:

9.jpg 最后初始化代码如下:

// 初始化 dp
vector<vector<int>> dp(weight.size(), vector<int>(bagweight + 1, 0));
for (int j = weight[0]; j <= bagweight; j++) {
    dp[0][j] = value[0];
}

费了这么大的功夫,才把如何初始化讲清楚,相信不少同学平时初始化dp数组是凭感觉来的,但有时候感觉是不靠谱的

4. 确定遍历顺序

在如下图中,可以看出,有两个遍历的维度:物品与背包重量

10.png 那么问题来了,先遍历 物品还是先遍历背包重量呢?

其实都可以!! 但是先遍历物品更好理解

那么我先给出先遍历物品,然后遍历背包重量的代码。

// weight数组的大小 就是物品个数
for(int i = 1; i < weight.size(); i++) { // 遍历物品
    for(int j = 0; j <= bagweight; j++) { // 遍历背包容量
        if (j < weight[i]) dp[i][j] = dp[i - 1][j];
        else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);

    }
}

先遍历背包,再遍历物品,也是可以的!(注意我这里使用的二维dp数组)

例如这样:

// weight数组的大小 就是物品个数
for(int j = 0; j <= bagweight; j++) { // 遍历背包容量
    for(int i = 1; i < weight.size(); i++) { // 遍历物品
        if (j < weight[i]) dp[i][j] = dp[i - 1][j];
        else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
    }
}

为什么也是可以的呢?

要理解递归的本质和递推的方向

dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 递归公式中可以看出dp[i] [j]是靠dp[i-1] [j]和dp[i - 1] [j - weight[i]]推导出来的。

dp[i-1] [j]和dp[i - 1] [j - weight[i]] 都在dp[i][j]的左上角方向(包括正上方向),那么先遍历物品,再遍历背包的过程如图所示:

转存失败,建议直接上传图片文件

11.png

再来看看先遍历背包,再遍历物品呢,如图:

转存失败,建议直接上传图片文件

12.png 大家可以看出,虽然两个for循环遍历的次序不同,但是dp[i][j]所需要的数据就是左上角,根本不影响dp[i][j]公式的推导!

但先遍历物品再遍历背包这个顺序更好理解。

其实背包问题里,两个for循环的先后循序是非常有讲究的,理解遍历顺序其实比理解推导公式难多了

5. 举例推导dp数组

来看一下对应的dp数组的数值,如图:

13.jpg 最终结果就是dp[2] [4]。

建议大家此时自己在纸上推导一遍,看看dp数组里每一个数值是不是这样的。

做动态规划的题目,最好的过程就是自己在纸上举一个例子把对应的dp数组的数值推导一下,然后在动手写代码!

如果推导明白了,代码写出来就算有问题,只要把dp数组打印出来,对比一下和自己推导的有什么差异,很快就可以发现问题了。

本题力扣上没有原题,大家可以去卡码网第46题 (opens new window)去练习,题意是一样的,代码如下:

  1. 携带研究材料(第六期模拟笔试)
题目描述

小明是一位科学家,他需要参加一场重要的国际科学大会,以展示自己的最新研究成果。他需要带一些研究材料,但是他的行李箱空间有限。这些研究材料包括实验设备、文献资料和实验样本等等,它们各自占据不同的空间,并且具有不同的价值。

小明的行李空间为 N,问小明应该如何抉择,才能携带最大价值的研究材料,每种研究材料只能选择一次,并且只有选与不选两种选择,不能进行切割。

输入描述

第一行包含两个正整数,第一个整数 M 代表研究材料的种类,第二个正整数 N,代表小明的行李空间。

第二行包含 M 个正整数,代表每种研究材料的所占空间。

第三行包含 M 个正整数,代表每种研究材料的价值。

输出描述

输出一个整数,代表小明能够携带的研究材料的最大价值。

输入示例
6 1
2 2 3 1 5 2
2 3 1 5 4 3
输出示例
5
提示信息

小明能够携带 6 种研究材料,但是行李空间只有 1,而占用空间为 1 的研究材料价值为 5,所以最终答案输出 5。

数据范围: 1 <= N <= 5000 1 <= M <= 5000 研究材料占用空间和价值都小于等于 1000

二维
import java.util.Scanner;

public class Main {
    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        int n = scanner.nextInt();
        int bagweight = scanner.nextInt();

        int[] weight = new int[n];
        int[] value = new int[n];

        for (int i = 0; i < n; ++i) {
            weight[i] = scanner.nextInt();
        }
        for (int j = 0; j < n; ++j) {
            value[j] = scanner.nextInt();
        }

        int[][] dp = new int[n][bagweight + 1];

        for (int j = weight[0]; j <= bagweight; j++) {
            dp[0][j] = value[0];
        }

        for (int i = 1; i < n; i++) {
            for (int j = 0; j <= bagweight; j++) {
                if (j < weight[i]) {
                    dp[i][j] = dp[i - 1][j];
                } else {
                    dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
                }
            }
        }

        System.out.println(dp[n - 1][bagweight]);
    }
}
n, bagweight = map(int, input().split())

weight = list(map(int, input().split()))
value = list(map(int, input().split()))

dp = [[0] * (bagweight + 1) for _ in range(n)]

for j in range(weight[0], bagweight + 1):
    dp[0][j] = value[0]

for i in range(1, n):
    for j in range(bagweight + 1):
        if j < weight[i]:
            dp[i][j] = dp[i - 1][j]
        else:
            dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i])

print(dp[n - 1][bagweight])
一维
import java.util.Scanner;

public class Main {
    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);

        // 读取 M 和 N
        int M = scanner.nextInt();  // 研究材料的数量
        int N = scanner.nextInt();  // 行李空间的大小

        int[] costs = new int[M];   // 每种材料的空间占用
        int[] values = new int[M];  // 每种材料的价值

        // 输入每种材料的空间占用
        for (int i = 0; i < M; i++) {
            costs[i] = scanner.nextInt();
        }

        // 输入每种材料的价值
        for (int j = 0; j < M; j++) {
            values[j] = scanner.nextInt();
        }

        // 创建一个动态规划数组 dp,初始值为 0
        int[] dp = new int[N + 1];

        // 外层循环遍历每个类型的研究材料
        for (int i = 0; i < M; i++) {
            // 内层循环从 N 空间逐渐减少到当前研究材料所占空间
            for (int j = N; j >= costs[i]; j--) {
                // 考虑当前研究材料选择和不选择的情况,选择最大值
                dp[j] = Math.max(dp[j], dp[j - costs[i]] + values[i]);
            }
        }

        // 输出 dp[N],即在给定 N 行李空间可以携带的研究材料的最大价值
        System.out.println(dp[N]);

        scanner.close();
    }
}
n, bagweight = map(int, input().split())
weight = list(map(int, input().split()))
value = list(map(int, input().split()))

dp = [0] * (bagweight + 1)  # 创建一个动态规划数组dp,初始值为0

dp[0] = 0  # 初始化dp[0] = 0,背包容量为0,价值最大为0

for i in range(n):  # 应该先遍历物品,如果遍历背包容量放在上一层,那么每个dp[j]就只会放入一个物品
    for j in range(bagweight, weight[i]-1, -1):  # 倒序遍历背包容量是为了保证物品i只被放入一次
        dp[j] = max(dp[j], dp[j - weight[i]] + value[i])

print(dp[bagweight])

总结

背包问题 是动态规划里的经典类型题目,大家要细细品味。

可能有的同学并没有注意到初始化 和 遍历顺序的重要性,我们后面做力扣上背包面试题目的时候,大家就会感受出来了。

下一篇 还是理论基础,我们再来讲一维dp数组实现的01背包(滚动数组),分析一下和二维有什么区别,在初始化和遍历顺序上又有什么差异。

416. 分割等和子集

力扣题目链接(opens new window)

题目难易:中等

给定一个只包含正整数的非空数组。是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。

注意: 每个数组中的元素不会超过 100 数组的大小不会超过 200

示例 1:

  • 输入: [1, 5, 11, 5]
  • 输出: true
  • 解释: 数组可以分割成 [1, 5, 5] 和 [11].

示例 2:

  • 输入: [1, 2, 3, 5]
  • 输出: false
  • 解释: 数组不能分割成两个元素和相等的子集.

提示:

  • 1 <= nums.length <= 200
  • 1 <= nums[i] <= 10

这道题目是要找是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。

那么只要找到集合里能够出现 sum / 2 的子集总和,就算是可以分割成两个相同元素和子集了。

本题是可以用回溯暴力搜索出所有答案的,但最后超时了,也不想再优化了,放弃回溯。

是否有其他解法可以解决此题。

本题的本质是,能否把容量为 sum / 2的背包装满。

这是 背包算法可以解决的经典类型题目

如果dp[j] == j 说明,集合中的子集总和正好可以凑成总和j,理解这一点很重要。

用例1,输入[1,5,11,5] 为例,如图:

14.png

class Solution:
    def canPartition(self, nums: List[int]) -> bool:
        s=sum(nums)
        if s%2==1:
            return False
        
        target=s//2
        dp=[0]*(1+target)

        for i in range(len(nums)):
            for j in range(target,nums[i]-1,-1):
                dp[j]=max(dp[j],dp[j-nums[i]]+nums[i])

        return dp[target]==target
'''
设 nums 的元素和为 s。
两个子集的元素和相等,意味着:

s 是偶数。
子集元素和恰好等于 s/2
​
如果 s 是奇数,直接返回 false。
如果 s 是偶数,问题相当于:
能否从 nums 中选出一个子序列,其元素和恰好等于 s/2
​'''

1049.最后一块石头的重量II

力扣题目链接(opens new window)

题目难度:中等

有一堆石头,每块石头的重量都是正整数。

每一回合,从中选出任意两块石头,然后将它们一起粉碎。假设石头的重量分别为 x 和 y,且 x <= y。那么粉碎的可能结果如下:

如果 x == y,那么两块石头都会被完全粉碎;

如果 x != y,那么重量为 x 的石头将会完全粉碎,而重量为 y 的石头新重量为 y-x。

最后,最多只会剩下一块石头。返回此石头最小的可能重量。如果没有石头剩下,就返回 0。

示例:

  • 输入:[2,7,4,1,8,1]
  • 输出:1

解释:

  • 组合 2 和 4,得到 2,所以数组转化为 [2,7,1,8,1],
  • 组合 7 和 8,得到 1,所以数组转化为 [2,1,1,1],
  • 组合 2 和 1,得到 1,所以数组转化为 [1,1,1],
  • 组合 1 和 1,得到 0,所以数组转化为 [1],这就是最优值。

提示:

  • 1 <= stones.length <= 30
  • 1 <= stones[i] <= 1000
class Solution:
    def lastStoneWeightII(self, stones: List[int]) -> int:
        total=sum(stones)
        dp=[0]*1501

        target=total//2

        for i in range(len(stones)):
            for j in range(target,stones[i]-1,-1):
                dp[j]=max(dp[j],dp[j-stones[i]]+stones[i])

        return total-dp[target]-dp[target]

'''一堆的石头重量是sum,那么我们就尽可能拼成 重量为 sum / 2 的石头堆。 
这样剩下的石头堆也是 尽可能接近 sum/2 的重量。 
那么此时问题就是有一堆石头,每个石头都有自己的重量,是否可以 装满 最大重量为 sum / 2的背包。
''' 

494.目标和

力扣题目链接(opens new window)

难度:中等

给定一个非负整数数组,a1, a2, ..., an, 和一个目标数,S。现在你有两个符号 + 和 -。对于数组中的任意一个整数,你都可以从 + 或 -中选择一个符号添加在前面。

返回可以使最终数组和为目标数 S 的所有添加符号的方法数。

示例:

  • 输入:nums: [1, 1, 1, 1, 1], S: 3
  • 输出:5

解释:

  • -1+1+1+1+1 = 3
  • +1-1+1+1+1 = 3
  • +1+1-1+1+1 = 3
  • +1+1+1-1+1 = 3
  • +1+1+1+1-1 = 3

一共有5种方法让最终目标和为3。

提示:

  • 数组非空,且长度不会超过 20 。
  • 初始的数组的和不会超过 1000 。
  • 保证返回的最终结果能被 32 位整数存下
class Solution:
    def findTargetSumWays(self, nums: List[int], target: int) -> int:
        total=sum(nums)
        if (total + target)%2==1 or abs(target)>total:
            return 0

        target_sum=(total + target) // 2
        dp=[[0]*(target_sum+1) for _ in range(len(nums))]
        dp[0][0]=1 if nums[0]!=0 else 2

        for i in range(1,target_sum+1):
            if nums[0]==i:
                dp[0][i]=1

        for i in range(1,len(nums)):
            for j in range(target_sum+1):
                if j>=nums[i]:
                    dp[i][j]=dp[i-1][j]+dp[i-1][j-nums[i]]

                else:
                    dp[i][j]=dp[i-1][j]

        return dp[-1][-1]

'''
问题可以转换为一个背包问题。假设 P 是选择加号的数字的总和,N 是选择减号的数字的总和,则有:
P + N = total(数组所有元素的总和)
P - N = target(目标值)
通过解方程可以得到:
P = (total + target) / 2
因此,问题转化为从数组中选择一些数字,使得它们的和为 target_sum = (total + target) // 2。

使用二维数组 dp[i][j],表示前 i 个数字中,有多少种方式可以组成和为 j'''

474.一和零

力扣题目链接(opens new window)

给你一个二进制字符串数组 strs 和两个整数 m 和 n 。

请你找出并返回 strs 的最大子集的大小,该子集中 最多 有 m 个 0 和 n 个 1 。

如果 x 的所有元素也是 y 的元素,集合 x 是集合 y 的 子集 。

示例 1:

  • 输入:strs = ["10", "0001", "111001", "1", "0"], m = 5, n = 3
  • 输出:4
  • 解释:最多有 5 个 0 和 3 个 1 的最大子集是 {"10","0001","1","0"} ,因此答案是 4 。 其他满足题意但较小的子集包括 {"0001","1"} 和 {"10","1","0"} 。{"111001"} 不满足题意,因为它含 4 个 1 ,大于 n 的值 3 。

示例 2:

  • 输入:strs = ["10", "0", "1"], m = 1, n = 1
  • 输出:2
  • 解释:最大的子集是 {"0", "1"} ,所以答案是 2 。

提示:

  • 1 <= strs.length <= 600
  • 1 <= strs[i].length <= 100
  • strs[i] 仅由 '0' 和 '1' 组成
  • 1 <= m, n <= 100
class Solution:
    def findMaxForm(self, strs: List[str], m: int, n: int) -> int:
        dp=[[0]*(n+1) for _ in range(m+1)]

        for s in strs:
            oneNum=s.count('1')
            zeroNum=s.count('0')

            for i in range(m,zeroNum-1,-1):
                for j in range(n,oneNum-1,-1):
                    dp[i][j]=max(dp[i][j],dp[i-zeroNum][j-oneNum]+1)

        return dp[m][n]

'''
本题中strs 数组里的元素就是物品,每个物品都是一个!

而m 和 n相当于是一个背包,两个维度的背包。

dp[i][j]:最多有i个0和j个1的strs的最大子集的大小为dp[i][j]
'''