这里只讲客户端与服务端联系相关的逻辑,涉及到binder驱动层时,先把Binder驱动层当成一个黑盒
1. servicemanager进程
为什么先说servicemanager?
我们知道binder的跨进程通讯就类似网络客户端和服务端通讯一样。网络通讯中,客户端是如何查找到服务端的,需要知道服务端的域名或者网址;然后请求cdn服务器,根据域名或者网址,找到对应服务器的ip地址;找到ip地址后,就可以通过这个ip地址访问服务端;
这里的servicemanager就类似cdn服务器一样,这里保存所有服务端的数据,供客户端查询。查询到服务端之后,就可以与服务端进行通讯了
也就是说,所有的binder跨进程通讯,服务端都需要在servicemanager中注册,然后客户端在servicemanager查找到对应的binder服务端之后,才能跨进程通讯。
所以servicemanager进程中必定有一个数组或者链表,存放binder服务端相关的全部信息
注意:很明显cnd服务器只是查询服务端,查询后,客户端就不再和cdn直接通讯了;servicemanager也是同理,当binder查询到servicemanager的服务之后,返回对应的binder_node,就会通过binder_node直接客户端服务端通讯
看servicemanager之前,要记住binder是通过add_service添加服务,并通过get_service获取对应的服务,就比较好理解源码逻辑了
OK 现在,no B B,see the code;
// \android-8.1.0_r1\frameworks\native\cmds\servicemanager
int main(int argc, char** argv)
{
struct binder_state *bs;
union selinux_callback cb;
char *driver;
if (argc > 1) {
driver = argv[1];
} else {
driver = "/dev/binder";
}
//1. 打开驱动
bs = binder_open(driver, 128*1024);
//2. 变成管理者
if (binder_become_context_manager(bs)) {
ALOGE("cannot become context manager (%s)\n", strerror(errno));
return -1;
}
cb.func_audit = audit_callback;
selinux_set_callback(SELINUX_CB_AUDIT, cb);
cb.func_log = selinux_log_callback;
selinux_set_callback(SELINUX_CB_LOG, cb);
#ifdef VENDORSERVICEMANAGER
sehandle = selinux_android_vendor_service_context_handle();
#else
sehandle = selinux_android_service_context_handle();
#endif
selinux_status_open(true);
if (sehandle == NULL) {
ALOGE("SELinux: Failed to acquire sehandle. Aborting.\n");
abort();
}
if (getcon(&service_manager_context) != 0) {
ALOGE("SELinux: Failed to acquire service_manager context. Aborting.\n");
abort();
}
//3、死循环监听请求(添加服务,获取服务)
binder_loop(bs, svcmgr_handler);
return 0;
}
1. 打开驱动
返回一个binder_state结构体
bs = binder_open(driver, 128*1024);
2. 成为管理者
// \frameworks\native\cmds\servicemanager\binder.c
// servicemanager 如何让自己成为管理者的呢?就是给binder驱动发送一个BINDER_SET_CONTEXT_MGR的消息,
int binder_become_context_manager(struct binder_state *bs){
return ioctl(bs->fd, BINDER_SET_CONTEXT_MGR, 0);
}
最终调用了binder_ioctl方法
static long binder_ioctl(struct file *filp, unsigned int cmd, unsigned long arg){
switch(cmd){
case BINDER_SET_CONTEXT_MGR:
/*设置Context manager,即将自己设置为ServiceManager,详见3.3*/
ret = binder_ioctl_set_ctx_mgr(filp);
if (ret)
goto err;
break;
}
}
注意,下面代码是驱动层的binder.c
//在驱动层的binder.c的代码中,内核代码在这里,先不看,先记住就是注册为binder的管理者
static int binder_ioctl_set_ctx_mgr(struct file *filp)
{
int ret = 0;
//flip是从servicemanager进程中传递过来的
struct binder_proc *proc = filp->private_data;
//binder内核进程的context
struct binder_context *context = proc->context;
///new_node是当前binder内核驱动进程
struct binder_node *new_node;
kuid_t curr_euid = current_euid();
mutex_lock(&context->context_mgr_node_lock);
if (context->binder_context_mgr_node) {
pr_err("BINDER_SET_CONTEXT_MGR already set\n");
ret = -EBUSY;
goto out;
}
ret = security_binder_set_context_mgr(proc->tsk);
if (ret < 0)
goto out;
if (uid_valid(context->binder_context_mgr_uid)) {
if (!uid_eq(context->binder_context_mgr_uid, curr_euid)) {
pr_err("BINDER_SET_CONTEXT_MGR bad uid %d != %d\n",
from_kuid(&init_user_ns, curr_euid),
from_kuid(&init_user_ns,
context->binder_context_mgr_uid));
ret = -EPERM;
goto out;
}
} else {
context->binder_context_mgr_uid = curr_euid;
}
new_node = binder_new_node(proc, NULL);
if (!new_node) {
ret = -ENOMEM;
goto out;
}
binder_node_lock(new_node);
new_node->local_weak_refs++;
new_node->local_strong_refs++;
new_node->has_strong_ref = 1;
new_node->has_weak_ref = 1;
context->binder_context_mgr_node = new_node;
binder_node_unlock(new_node);
binder_put_node(new_node);
out:
mutex_unlock(&context->context_mgr_node_lock);
return ret;
}
3. 死循环监听请求(添加服务,获取服务)
// \frameworks\native\cmds\servicemanager\binder.c
// Android的尿性,跟loop相关的肯定是个死循环,
void binder_loop(struct binder_state *bs, binder_handler func)
{
int res;
struct binder_write_read bwr;
uint32_t readbuf[32];
bwr.write_size = 0;
bwr.write_consumed = 0;
bwr.write_buffer = 0;
readbuf[0] = BC_ENTER_LOOPER;
binder_write(bs, readbuf, sizeof(uint32_t));
//OK ,死循环
for (;;) {
bwr.read_size = sizeof(readbuf);
bwr.read_consumed = 0;
bwr.read_buffer = (uintptr_t) readbuf;
//传递一个BINDER_WRITE_READ命令,并将数据bwr传进去
res = ioctl(bs->fd, BINDER_WRITE_READ, &bwr);
//这里应该是解析数据
res = binder_parse(bs, 0, (uintptr_t) readbuf, bwr.read_consumed, func);
}
}
int binder_parse(struct binder_state *bs, struct binder_io *bio,
uintptr_t ptr, size_t size, binder_handler func)
{
int r = 1;
uintptr_t end = ptr + (uintptr_t) size;
while (ptr < end) {
uint32_t cmd = *(uint32_t *) ptr;
ptr += sizeof(uint32_t);
#if TRACE
fprintf(stderr,"%s:\n", cmd_name(cmd));
#endif
switch(cmd) {
case BR_NOOP:
break;
case BR_TRANSACTION_COMPLETE:
break;
case BR_INCREFS:
case BR_ACQUIRE:
case BR_RELEASE:
case BR_DECREFS:
#if TRACE
fprintf(stderr," %p, %p\n", (void *)ptr, (void *)(ptr + sizeof(void *)));
#endif
ptr += sizeof(struct binder_ptr_cookie);
break;
case BR_TRANSACTION: {
struct binder_transaction_data *txn = (struct binder_transaction_data *) ptr;
if ((end - ptr) < sizeof(*txn)) {
ALOGE("parse: txn too small!\n");
return -1;
}
binder_dump_txn(txn);
// 这个func就是binder_loop传进来的svcmgr_handler函数
if (func) {
unsigned rdata[256/4];
struct binder_io msg;
struct binder_io reply;
int res;
bio_init(&reply, rdata, sizeof(rdata), 4);
//将txn数据塞给msg
bio_init_from_txn(&msg, txn);
res = func(bs, txn, &msg, &reply);
if (txn->flags & TF_ONE_WAY) {
binder_free_buffer(bs, txn->data.ptr.buffer);
} else {
binder_send_reply(bs, &reply, txn->data.ptr.buffer, res);
}
}
ptr += sizeof(*txn);
break;
}
case BR_REPLY: {
struct binder_transaction_data *txn = (struct binder_transaction_data *) ptr;
if ((end - ptr) < sizeof(*txn)) {
ALOGE("parse: reply too small!\n");
return -1;
}
binder_dump_txn(txn);
if (bio) {
bio_init_from_txn(bio, txn);
bio = 0;
} else {
/* todo FREE BUFFER */
}
ptr += sizeof(*txn);
r = 0;
break;
}
case BR_DEAD_BINDER: {
struct binder_death *death = (struct binder_death *)(uintptr_t) *(binder_uintptr_t *)ptr;
ptr += sizeof(binder_uintptr_t);
death->func(bs, death->ptr);
break;
}
case BR_FAILED_REPLY:
r = -1;
break;
case BR_DEAD_REPLY:
r = -1;
break;
default:
ALOGE("parse: OOPS %d\n", cmd);
return -1;
}
}
return r;
}
int svcmgr_handler(struct binder_state *bs,
struct binder_transaction_data *txn,
struct binder_io *msg,
struct binder_io *reply)
{
struct svcinfo *si;
uint16_t *s;
size_t len;
uint32_t handle;
uint32_t strict_policy;
int allow_isolated;
//ALOGI("target=%p code=%d pid=%d uid=%d\n",
// (void*) txn->target.ptr, txn->code, txn->sender_pid, txn->sender_euid);
if (txn->target.ptr != BINDER_SERVICE_MANAGER)
return -1;
if (txn->code == PING_TRANSACTION)
return 0;
// Equivalent to Parcel::enforceInterface(), reading the RPC
// header with the strict mode policy mask and the interface name.
// Note that we ignore the strict_policy and don't propagate it
// further (since we do no outbound RPCs anyway).
strict_policy = bio_get_uint32(msg);
s = bio_get_string16(msg, &len);
if (s == NULL) {
return -1;
}
if ((len != (sizeof(svcmgr_id) / 2)) ||
memcmp(svcmgr_id, s, sizeof(svcmgr_id))) {
fprintf(stderr,"invalid id %s\n", str8(s, len));
return -1;
}
switch(txn->code) {
case SVC_MGR_GET_SERVICE:
case SVC_MGR_CHECK_SERVICE:
s = bio_get_string16(msg, &len);
if (s == NULL) {
return -1;
}
handle = do_find_service(s, len, txn->sender_euid, txn->sender_pid);
if (!handle)
break;
bio_put_ref(reply, handle);
return 0;
case SVC_MGR_ADD_SERVICE:
//这里就是添加服务时会走的地方,
s = bio_get_string16(msg, &len);
if (s == NULL) {
return -1;
}
handle = bio_get_ref(msg);
allow_isolated = bio_get_uint32(msg) ? 1 : 0;
if (do_add_service(bs, s, len, handle, txn->sender_euid,
allow_isolated, txn->sender_pid))
return -1;
break;
case SVC_MGR_LIST_SERVICES: {
uint32_t n = bio_get_uint32(msg);
if (!svc_can_list(txn->sender_pid, txn->sender_euid)) {
ALOGE("list_service() uid=%d - PERMISSION DENIED\n",
txn->sender_euid);
return -1;
}
si = svclist;
while ((n-- > 0) && si)
si = si->next;
if (si) {
bio_put_string16(reply, si->name);
return 0;
}
return -1;
}
default:
ALOGE("unknown code %d\n", txn->code);
return -1;
}
bio_put_uint32(reply, 0);
return 0;
}
int do_add_service(struct binder_state *bs,
const uint16_t *s, size_t len,
uint32_t handle, uid_t uid, int allow_isolated,
pid_t spid)
{
struct svcinfo *si;
si = find_svc(s, len);
if (si) {//已经找到正要添加的service直接返回该service的handle
if (si->handle) {
ALOGE("add_service('%s',%x) uid=%d - ALREADY REGISTERED, OVERRIDE\n",
str8(s, len), handle, uid);
svcinfo_death(bs, si);
}
si->handle = handle;
} else {
//没找到,就申请svcinfo空间
si = malloc(sizeof(*si) + (len + 1) * sizeof(uint16_t));
if (!si) {
ALOGE("add_service('%s',%x) uid=%d - OUT OF MEMORY\n",
str8(s, len), handle, uid);
return -1;
}
si->handle = handle;
si->len = len;
memcpy(si->name, s, (len + 1) * sizeof(uint16_t));
si->name[len] = '\0';
si->death.func = (void*) svcinfo_death;
si->death.ptr = si;
si->allow_isolated = allow_isolated;
si->next = svclist;
svclist = si;
//将新创建的svcinfo添加到svclist的头部
}
binder_acquire(bs, handle);
binder_link_to_death(bs, handle, &si->death);
return 0;
}
很明显,do_add_service这里可以看出svclist就是存放这所有的服务端信息; 同时 do_find_service必定是从svclist中根据name查找对应的信息
uint32_t do_find_service(const uint16_t *s, size_t len, uid_t uid, pid_t spid)
{
struct svcinfo *si = find_svc(s, len);
if (!si || !si->handle) {
return 0;
}
if (!si->allow_isolated) {
uid_t appid = uid % AID_USER;
if (appid >= AID_ISOLATED_START && appid <= AID_ISOLATED_END) {
return 0;
}
}
if (!svc_can_find(s, len, spid, uid)) {
return 0;
}
return si->handle;
}
//从svclist中查找跟name想通的svcinfo
struct svcinfo *find_svc(const uint16_t *s16, size_t len)
{
struct svcinfo *si;
for (si = svclist; si; si = si->next) {
if ((len == si->len) &&
!memcmp(s16, si->name, len * sizeof(uint16_t))) {
return si;
}
}
return NULL;
}
2. Android binder服务端流程解析
最终会调用do_add_service,将此服务添加到servicemanager中,方便客户端通讯的时候在servicemanager中查找 这里继承BBinder
3. Android binder客户端流程解析
最终会调用do_find_service,在servicemanager中查找,并返回binder服务端的handle
这里继承BpBinder