话说回来你真的会建索引吗?(上)

530 阅读10分钟

你有没有遇到过,查询数据库时,好像一杯凉水泡的茶,慢得像乌龟爬行?别担心,也许你只需要给数据库加点“油”——通过合适的索引!不过,索引不是万能的魔法,它也是有选择的。像选鞋子一样,得挑合脚的!今天让我给大家分享一下,在什么情况下加索引,才能让你的查询飞起来!

哪些情况适合创建索引

1.字段的数值有唯一性的限制

业务上具有唯一特性的字段,即使是组合字段,也必须建成唯一索引。(来源:Alibaba)

说明:不要以为唯一索引影响了 insert 速度,这个速度损耗可以忽略,但提高查找速度是明显的。

2.频繁作为 WHERE 查询条件的字段

某个字段在SELECT语句的 WHERE 条件中经常被使用到,那么就需要给这个字段创建索引了。尤其是在数据量大的情况下,创建普通索引就可以大幅提升数据查询的效率。

比如student_info数据表(含 100 万条数据),假设我们想要查询 student_id=123110 的用户信息。

3.经常 GROUP BY 和 ORDER BY 的列

索引就是让数据按照某种顺序进行存储或检索,因此当我们使用 GROUP BY 对数据进行分组查询,或者使用 ORDER BY 对数据进行排序的时候,就需要对分组或者排序的字段进行索引。如果待排序的列有多个,那么可以在这些列上建立组合索引。

4.UPDATE、DELETE 的 WHERE 条件列

对数据按照某个条件进行查询后再进行 UPDATE 或 DELETE 的操作,如果对 WHERE 字段创建了索引,就能大幅提升效率。原理是因为我们需要先根据 WHERE 条件列检索出来这条记录,然后再对它进行更新或删除。 如果进行更新的时候,更新的字段是非索引字段,提升的效率会更明显,这是因为非索引字段更新不需要对索引进行维护。

5.DISTINCT 字段需要创建索引

有时候我们需要对某个字段进行去重,使用 DISTINCT,那么对这个字段创建索引,也会提升查询效率。

比如,我们想要查询课程表中不同的 student_id 都有哪些,如果我们没有对 student_id 创建索引,执行

SQL 语句:

SELECT DISTINCT( student_id)FROM 'student_info `;

运行结果( 600637 条记录,运行时间 0.683s):

... 加索引语句
SELECT DISTINCT( student_id)FROM 'student_info `;

如果我们对 student_id 创建索引,再执行 SQL 语句:

运行结果( 600637 条记录,运行时间 0.010s):

你能看到 SQL 查询效率有了提升,同时显示出来的 student_id 还是按照递增的顺序进行展示的。这是因

为索引会对数据按照某种顺序进行排序,所以在去重的时候也会快很多。 因为紧挨着所以去重特别方便

6.多表 JOIN 连接操作时,创建索引注意事项

首先,连接表的数量尽量不要超过 3 张,因为每增加一张表就相当于增加了一次嵌套的循环,数量级增

长会非常快,严重影响查询的效率。

其次,对 WHERE 条件创建索引,因为 WHERE 才是对数据条件的过滤。如果在数据量非常大的情况下,

没有 WHERE 条件过滤是非常可怕的。

最后,对用于连接的字段创建索引,并且该字段在多张表中的类型必须一致。比如 course_id 在

student_info 表和 course 表中都为 int(11) 类型,而不能一个为 int 另一个为 varchar 类型。

举个例子,如果我们只对 student_id 创建索引,执行 SQL 语句:

SELECT course_id,name,student_info.student_id, course_name
FROM student_info JOIN course
ON student_info .course_id = course.course_id
WHERE name = '462eed7ac6e791292a79' ;

运行结果( 1 条数据,运行时间 0.189s):

这里我们对 name 创建索引,再执行上面的 SQL 语句,运行时间为 0.002s。

7.使用列的类型小的创建索引

我们这里所说的类型大小指的就是该类型表示的数据范围的大小。

我们在定义表结构的时候要显式的指定列的类型,以整数类型为例,有TINYINTMEDIUMINTINTBIGINT等,它们占用的存储空间依次递增,能表示的整数范围当然也是依次递增。如果我们想要对某个整数列建立索引的话,在表示的整数范围允许的情况下,尽量让索引列使用较小的类型,比如我们能使用INT就不要使用BIGINT,能使用MEDIUMINT 就不要使用INT。这是因为:

  • 数据类型越小,在查询时进行的比较操作越快
  • 数据类型越小,索引占用的存储空间就越少,在一个数据页内就可以放下更多的记录,从而减少磁盘I/0带来的性能损耗,也就意味着可以把更多的数据页缓存在内存中,从而加快读写效率。

这个建议对于表的主键来说更加适用,因为不仅是聚簇索引中会存储主键值,其他所有的二级索引的节点处都会存储一份记录的主键值,如果主键使用更小的数据类型,也就意味着节省更多的存储空间和更高效的I/O。

8.使用字符串前缀创建索引

假设我们的字符串很长,那存储一个字符串就需要占用很大的存储空间。在我们需要为这个字符串列建立索引时,那就意味着在对应的B+树中有这么两个问题:

  • B+树索引中的记录需要把该列的完整字符串存储起来,更费时。而且字符串越长,在索引中占用的存储空间越大。
  • 如果B+树索引中索引列存储的字符串很长,那在做字符串比较时会占用更多的时间。

我们可以通过截取字段的前面一部分内容建立索引,这个就叫前缀索引。这样在查找记录时虽然不能精确的定位到记录的位置,但是能定位到相应前缀所在的位置,然后根据前缀相同的记录的主键值回表查询完整的字符串值。既节约空间,又减少了字符串的比较时间,还大体能解决排序的问题。

例如,TEXT和BLOG类型的字段,进行全文检索会很浪费时间,如果只检索字段前面的若干字符,这样可以提高检索速度。

创建一张商户表,因为地址字段比较长,在地址字段上建立前缀索引

create table shop(address varchar( 120 ) not null);
​
alter table shop add index(address( 12 ));

问题是,截取多少呢?截取得多了,达不到节省索引存储空间的目的;截取得少了,重复内容太多,字段的散列度(选择性)会降低。 怎么计算不同的长度的选择性呢

先看一下字段在全部数据中的选择度:

select count(distinct address) / count(*) from shop;

通过不同长度去计算,与全表的选择性对比:

公式:

count(distinct left(列名, 索引长度))/count(*)

例如:

select count(distinct left(address, 10 )) / count(*) as sub10, -- 截取前 10 个字符的选择度
count(distinct left(address, 15 )) / count(*) as sub11, -- 截取前 15 个字符的选择度
count(distinct left(address, 20 )) / count(*) as sub12, -- 截取前 20 个字符的选择度
count(distinct left(address, 25 )) / count(*) as sub13 -- 截取前 25 个字符的选择度
from shop;

引申另一个问题:索引列前缀对排序的影响

如果使用了索引列前缀,比方说前边只把address列的前12个字符放到了二级索引中,下边这个查询可能就有点儿尴尬了:

SELECT * FROM shop
ORDER BY address  # 这个地方order by 就不准了 如果用前12个建立索引的话
LIMIT 12;

因为二级索引中不包含完整的address列信息,所以无法对前12个字符相同,后边的字符不同的记录进行排序,也 就是使用索引列前缀的方式无法支持使用索引排序,只能使用文件排序。

拓展:Alibaba《Java开发手册》

强制】在 varchar 字段上建立索引时,必须指定索引长度,没必要对全字段建立索引,根据实际文本区分度决定索引长度。

说明:索引的长度与区分度是一对矛盾体,一般对字符串类型数据,长度为 20 的索引,区分度会高达90% 以上,可以使用 count(distinct left(列名, 索引长度))/count(*)的区分度来确定。

9.区分度高(散列性高)的列适合作为索引

列的基数指的是某一列中不重复数据的个数,比方说某个列包含值2,5,8,2,5,8,2,5,8,虽然有9条记录,但该列的基数却是3。也就是说,在记录行数一定的情况下,列的基数越大,该列中的值越分散;列的基数越小,该列中的值越集中。这个列的基数指标非常重要,直接影响我们是否能有效的利用索引。最好为列的基数大的列建立索引,为基数太小列的建立索引效果可能不好。

可以使用公式 select count(distinct a)/count(*) from t1计算区分度,越接近1越好,一般超过33%就算是比较高效的索引了。

拓展:联合索引把区分度高(散列性高)的列放在前面。

10.使用最频繁的列放到联合索引的左侧

这样也可以较少的建立一些索引。同时,由于"最左前缀原则",可以增加联合索引的使用率。

11.在多个字段都要创建索引的情况下,联合索引优于单值索引

限制索引的数目

在实际工作中,我们也需要注意平衡,索引的数目不是越多越好。我们需要限制每张表上的索引数量,建议单张表索引数量不超过6个。原因:

① 每个索引都需要占用磁盘空间,索引越多,需要的磁盘空间就越大。

② 索引会影响INSERTDELETEUPDATE等语句的性能,因为表中的数据更改的同时,索引也会进行调整和更新,会造成负担。

③优化器在选择如何优化查询时,会根据统一信息,对每一个可以用到的索引来进行评估,以生成出一个最好的执行计划,如果同时有很多个索引都可以用于查询,会增加MySQL优化器生成执行计划时间,降低查询性能。

总结

当然了,建立索引也不是像加盐一样随便撒,做得过了会让你的数据库变成“肥肠”——膨胀得厉害。记住,索引要精挑细选,才能在查询时带给你速度上的飙升,而不是反噬性能。希望这篇文章让你对数据库的索引有了新的理解!索引,做得好,数据库真的可以飞!不过,别急着高兴,索引并不是万能的——有些时候,反而不适合创建索引。那么,在什么情况下不适合创建索引呢?别急,接下来我们就来聊聊,哪些场景下索引可能会成为性能的“绊脚石”!