densenet
结构
层名称 | 类型 | 输入大小 (H x W x C) | 输出大小 (H x W x C) | 核尺寸 | 步长 | 参数数量 |
---|
Initial Conv | Conv2D | 224 x 224 x 3 | 112 x 112 x 64 | 7 x 7 | 2 | 9,408 |
Max Pooling | MaxPool2D | 112 x 112 x 64 | 56 x 56 x 64 | 3 x 3 | 2 | 0 |
Dense Block 1 | Composite | 56 x 56 x 64 | 56 x 56 x 256 | - | - | - |
| Bottleneck 1.1 | Conv2D | 56 x 56 x 64 | 56 x 56 x 128 | 1 x 1 | 1 | 832 |
| Conv 1.1 | Conv2D | 56 x 56 x 128 | 56 x 56 x 32 | 3 x 3 | 1 | 3,072 |
| ... | ... | ... | ... | ... | ... | ... |
| Bottleneck 1.6 | Conv2D | 56 x 56 x 256 | 56 x 56 x 128 | 1 x 1 | 1 | 832 |
| Conv 1.6 | Conv2D | 56 x 56 x 128 | 56 x 56 x 32 | 3 x 3 | 1 | 3,072 |
Transition Layer 1 | Composite | 56 x 56 x 320 | 28 x 28 x 128 | - | - | - |
| Conv | Conv2D | 56 x 56 x 320 | 56 x 56 x 128 | 1 x 1 | 1 | 4,096 |
| Average Pooling | AveragePool2D | 56 x 56 x 128 | 28 x 28 x 128 | 2 x 2 | 2 | 0 |
Dense Block 2 | Composite | 28 x 28 x 128 | 28 x 28 x 512 | - | - | - |
| Bottleneck 2.1 | Conv2D | 28 x 28 x 128 | 28 x 28 x 128 | 1 x 1 | 1 | 1,664 |
| Conv 2.1 | Conv2D | 28 x 28 x 128 | 28 x 28 x 32 | 3 x 3 | 1 | 9,216 |
| ... | ... | ... | ... | ... | ... | ... |
| Bottleneck 2.6 | Conv2D | 28 x 28 x 512 | 28 x 28 x 128 | 1 x 1 | 1 | 1,664 |
| Conv 2.6 | Conv2D | 28 x 28 x 128 | 28 x 28 x 32 | 3 x 3 | 1 | 9,216 |
Transition Layer 2 | Composite | 28 x 28 x 640 | 14 x 14 x 256 | - | - | - |
| Conv | Conv2D | 28 x 28 x 640 | 28 x 28 x 256 | 1 x 1 | 1 | 16,384 |
| Average Pooling | AveragePool2D | 28 x 28 x 256 | 14 x | |
下面是一个Dense Block的结构表格示例,这里以DenseNet-121中的第一个Dense Block为例,该Dense Block包含6个卷积层(每个卷积层由一个瓶颈层和一个3x3卷积层组成)。请注意,每个卷积层的输入大小是基于之前所有层的特征图合并后的结果。
层名称 | 类型 | 输入大小 (H x W x C) | 输出大小 (H x W x C) | 核尺寸 | 步长 | 参数数量 |
---|
Bottleneck 1.1 | Conv2D | 56 x 56 x 64 | 56 x 56 x 128 | 1 x 1 | 1 | 832 |
Conv 1.1 | Conv2D | 56 x 56 x 128 | 56 x 56 x 32 | 3 x 3 | 1 | 3,072 |
Bottleneck 1.2 | Conv2D | 56 x 56 x 96 | 56 x 56 x 128 | 1 x 1 | 1 | 1,056 |
Conv 1.2 | Conv2D | 56 x 56 x 128 | 56 x 56 x 32 | 3 x 3 | 1 | 3,072 |
Bottleneck 1.3 | Conv2D | 56 x 56 x 128 | 56 x 56 x 128 | 1 x 1 | 1 | 1,056 |
Conv 1.3 | Conv2D | 56 x 56 x 128 | 56 x 56 x 32 | 3 x 3 | 1 | 3,072 |
Bottleneck 1.4 | Conv2D | 56 x 56 x 160 | 56 x 56 x 128 | 1 x 1 | 1 | 1,056 |
Conv 1.4 | Conv2D | 56 x 56 x 128 | 56 x 56 x 32 | 3 x 3 | 1 | 3,072 |
Bottleneck 1.5 | Conv2D | 56 x 56 x 192 | 56 x 56 x 128 | 1 x 1 | 1 | 1,056 |
Conv 1.5 | Conv2D | 56 x 56 x 128 | 56 x 56 x 32 | 3 x 3 | 1 | 3,072 |
Bottleneck 1.6 | Conv2D | 56 x 56 x 224 | 56 x 56 x 128 | 1 x 1 | 1 | 1,056 |
Conv 1.6 | Conv2D | 56 x 56 x 128 | 56 x 56 x 32 | 3 x 3 | 1 | 3,072 |
下面是一个Transition Layer的结构表格示例,这里以DenseNet-121中的一个Transition Layer为例:
层名称 | 类型 | 输入大小 (H x W x C) | 输出大小 (H x W x C) | 核尺寸 | 步长 | 参数数量 |
---|
Conv (Transition) | Conv2D | 56 x 56 x 256 | 56 x 56 x 128 | 1 x 1 | 1 | 33,024 |
Avg Pooling | AveragePooling2D | 56 x 56 x 128 | 28 x 28 x 128 | 2 x 2 | 2 | 0 |
pytorch 源码
import torch
import torch.nn as nn
import torch.nn.functional as F
class DenseLayer(nn.Module):
def __init__(self, in_channels, growth_rate):
super(DenseLayer, self).__init__()
inter_channels = 4 * growth_rate
self.bn1 = nn.BatchNorm2d(in_channels)
self.relu = nn.ReLU(inplace=True)
self.conv1 = nn.Conv2d(in_channels, inter_channels, kernel_size=1, bias=False)
self.bn2 = nn.BatchNorm2d(inter_channels)
self.conv2 = nn.Conv2d(inter_channels, growth_rate, kernel_size=3, padding=1, bias=False)
def forward(self, x):
out = self.bn1(x)
out = self.relu(out)
out = self.conv1(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv2(out)
out = torch.cat([x, out], 1)
return out
class DenseBlock(nn.Module):
def __init__(self, in_channels, growth_rate, num_layers):
super(DenseBlock, self).__init__()
layers = []
for i in range(num_layers):
layers.append(DenseLayer(in_channels + i * growth_rate, growth_rate))
self.layers = nn.Sequential(*layers)
def forward(self, x):
return self.layers(x)
class TransitionLayer(nn.Module):
def __init__(self, in_channels, out_channels):
super(TransitionLayer, self).__init__()
self.bn = nn.BatchNorm2d(in_channels)
self.relu = nn.ReLU(inplace=True)
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
self.pool = nn.AvgPool2d(kernel_size=2, stride=2)
def forward(self, x):
out = self.bn(x)
out = self.relu(out)
out = self.conv(out)
out = self.pool(out)
return out
class DenseNet(nn.Module):
def __init__(self, growth_rate=32, block_config=(6, 12, 24, 16), num_init_features=64, bn_size=4, drop_rate=0, num_classes=1000):
super(DenseNet, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(3, num_init_features, kernel_size=7, stride=2, padding=3, bias=False),
nn.BatchNorm2d(num_init_features),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
)
num_features = num_init_features
for i, num_layers in enumerate(block_config):
self.features.add_module('denseblock%d' % (i + 1),
DenseBlock(num_features, growth_rate, num_layers))
num_features += num_layers * growth_rate
if i != len(block_config) - 1:
self.features.add_module('transition%d' % (i + 1),
TransitionLayer(num_features, num_features // 2))
num_features = num_features // 2
self.features.add_module('bn', nn.BatchNorm2d(num_features))
self.features.add_module('relu', nn.ReLU(inplace=True))
self.classifier = nn.Linear(num_features, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.constant_(m.bias, 0)
def forward(self, x):
features = self.features(x)
out = F.adaptive_avg_pool2d(features, (1, 1))
out = torch.flatten(out, 1)
out = self.classifier(out)
return out
densenet121 = DenseNet(growth_rate=32, block_config=(6, 12, 24, 16))
print(densenet121)
input_tensor = torch.randn(1, 3, 224, 224)
output = densenet121(input_tensor)
print(output.shape)
mobilenet
结构
层名称 | 类型 | 输入大小(HWC) | 输出大小(HWC) | 核尺寸 | 步长 | 参数数量 |
---|
Conv2d_0 | Conv2d | 224x224x3 | 112x112x32 | 3x3 | 2 | 864 |
DepthwiseConv2d_1 | DepthwiseConv2d | 112x112x32 | 112x112x32 | 3x3 | 1 | 288 |
Conv2d_2 | Conv2d | 112x112x32 | 112x112x64 | 1x1 | 1 | 2048 |
DepthwiseConv2d_3 | DepthwiseConv2d | 112x112x64 | 56x56x64 | 3x3 | 2 | 576 |
Conv2d_4 | Conv2d | 56x56x64 | 56x56x128 | 1x1 | 1 | 8192 |
... | ... | ... | ... | ... | ... | ... |
DepthwiseConv2d_12 | DepthwiseConv2d | 14x14x512 | 14x14x512 | 3x3 | 1 | 4608 |
Conv2d_13 | Conv2d | 14x14x512 | 14x14x1024 | 1x1 | 1 | 524288 |
DepthwiseConv2d_14 | DepthwiseConv2d | 14x14x1024 | 7x7x1024 | 3x3 | 2 | 9216 |
Conv2d_15 | Conv2d | 7x7x1024 | 7x7x1024 | 1x1 | 1 | 1048576 |
AvgPool2d_16 | AvgPool2d | 7x7x1024 | 1x1x1024 | 7x7 | 1 | 0 |
Flatten_17 | Flatten | 1x1x1024 | 1024 | - | - | 0 |
Linear_18 | Linear | 1024 | 1000 | - | - | 1025000 |
pytorch 源码
import torch
import torch.nn as nn
import torch.nn.functional as F
class MobileNetV1(nn.Module):
def __init__(self, num_classes=1000):
super(MobileNetV1, self).__init__()
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=2, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(32)
self.layers = self._make_layers(in_channels=32)
self.conv2 = nn.Conv2d(1024, 1024, kernel_size=1, stride=1, bias=False)
self.bn2 = nn.BatchNorm2d(1024)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(1024, num_classes)
def _make_layers(self, in_channels):
layers = []
cfg = [
(32, 1),
(64, 2),
(128, 2),
(256, 2),
(512, 6),
(1024, 2),
]
for x, stride in cfg:
layers.append(nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=stride, padding=1, groups=in_channels, bias=False))
layers.append(nn.BatchNorm2d(in_channels))
layers.append(nn.ReLU6(inplace=True))
layers.append(nn.Conv2d(in_channels, x, kernel_size=1, stride=1, padding=0, bias=False))
layers.append(nn.BatchNorm2d(x))
layers.append(nn.ReLU6(inplace=True))
in_channels = x
return nn.Sequential(*layers)
def forward(self, x):
x = F.relu6(self.bn1(self.conv1(x)))
x = self.layers(x)
x = F.relu6(self.bn2(self.conv2(x)))
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
model = MobileNetV1(num_classes=1000)
print(model)
空间注意力网络
结构
层名称 | 类型 | 输入大小(HWC) | 输出大小(HWC) | 核尺寸 | 步长 | 参数数量 |
---|
Input | - | 224x224x3 | - | - | - | 0 |
Conv1 | Conv2D | 224x224x3 | 112x112x64 | 7x7 | 2 | 9472 |
BatchNorm1 | BatchNorm | 112x112x64 | 112x112x64 | - | - | 256 |
ReLU1 | ReLU | 112x112x64 | 112x112x64 | - | - | 0 |
MaxPool1 | MaxPooling | 112x112x64 | 56x56x64 | 3x3 | 2 | 0 |
Conv2 | Conv2D | 56x56x64 | 56x56x128 | 3x3 | 1 | 73856 |
BatchNorm2 | BatchNorm | 56x56x128 | 56x56x128 | - | - | 512 |
ReLU2 | ReLU | 56x56x128 | 56x56x128 | - | - | 0 |
SpatialAttn1 | SpatialAttn | 56x56x128 | 56x56x128 | - | - | 8192 |
Conv3 | Conv2D | 56x56x128 | 28x28x256 | 3x3 | 2 | 295168 |
BatchNorm3 | BatchNorm | 28x28x256 | 28x28x256 | - | - | 1024 |
ReLU3 | ReLU | 28x28x256 | 28x28x256 | - | - | 0 |
SpatialAttn2 | SpatialAttn | 28x28x256 | 28x28x256 | - | - | 32768 |
Conv4 | Conv2D | 28x28x256 | 14x14x512 | 3x3 | 2 | 1180160 |
BatchNorm4 | BatchNorm | 14x14x512 | 14x14x512 | - | - | 2048 |
ReLU4 | ReLU | 14x14x512 | 14x14x512 | - | - | 0 |
SpatialAttn3 | SpatialAttn | 14x14x512 | 14x14x512 | - | - | 131072 |
AvgPool | AvgPooling | 14x14x512 | 7x7x512 | 7x7 | 1 | 0 |
Flatten | Flatten | 7x7x512 | 25088 | - | - | 0 |
FC1 | Dense | 25088 | 4096 | - | - | 102764544 |
ReLU5 | ReLU | 4096 | 4096 | - | - | 0 |
Dropout | Dropout | 4096 | 4096 | - | - | 0 |
FC2 | Dense | 4096 | 1000 | - | - | 4097000 |
Softmax | Softmax | 1000 | 1000 | - | - | 0 |
以下是一个简化的空间注意力模块的结构表格。请注意,这个表格是一个示例,实际的网络结构可能会有所不同。
层名称 | 类型 | 输入大小(HWC) | 输出大小(HWC) | 核尺寸 | 步长 | 参数数量 |
---|
Input | - | HxWxC | - | - | - | 0 |
Conv1 | Conv2D | HxWxC | HxWx1 | 1x1 | 1 | C |
Sigmoid | Sigmoid | HxWx1 | HxWx1 | - | - | 0 |
Multiply | Element-wise Mul | HxWxC | HxWxC | - | - | 0 |
pytorch 源码
import torch
import torch.nn as nn
import torch.nn.functional as F
class SpatialAttentionModule(nn.Module):
def __init__(self, kernel_size=7):
super(SpatialAttentionModule, self).__init__()
assert kernel_size % 2 == 1, "Kernel size must be odd"
self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=kernel_size//2, bias=False)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
avg_out = torch.mean(x, dim=1, keepdim=True)
max_out, _ = torch.max(x, dim=1, keepdim=True)
x = torch.cat([avg_out, max_out], dim=1)
x = self.conv1(x)
return self.sigmoid(x) * x
class SpatialAttentionNetwork(nn.Module):
def __init__(self):
super(SpatialAttentionNetwork, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.spatial_attention = SpatialAttentionModule(kernel_size=7)
self.layer1 = self._make_layer(64, 64, 3)
self.layer2 = self._make_layer(64, 128, 4, stride=2)
self.layer3 = self._make_layer(128, 256, 6, stride=2)
self.layer4 = self._make_layer(256, 512, 3, stride=2)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512, 1000)
def _make_layer(self, in_channels, out_channels, blocks, stride=1):
layers = []
layers.append(nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False))
layers.append(nn.BatchNorm2d(out_channels))
layers.append(nn.ReLU(inplace=True))
for i in range(1, blocks):
layers.append(nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False))
layers.append(nn.BatchNorm2d(out_channels))
layers.append(nn.ReLU(inplace=True))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.spatial_attention(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.fc(x)
return x
san = SpatialAttentionNetwork()
print(san)
卷积变分自编码器
结构1(转置卷积)
层名称 | 类型 | 输入大小(HWC) | 输出大小(HWC) | 核尺寸 | 步长 | 参数数量 |
---|
Input | - | 128x128x3 | - | - | - | 0 |
Conv1 | Conv2D | 128x128x3 | 64x64x32 | 3x3 | 2x2 | 896 |
ReLU1 | ReLU | 64x64x32 | 64x64x32 | - | - | 0 |
Conv2 | Conv2D | 64x64x32 | 32x32x64 | 3x3 | 2x2 | 18496 |
ReLU2 | ReLU | 32x32x64 | 32x32x64 | - | - | 0 |
Conv3 | Conv2D | 32x32x64 | 16x16x128 | 3x3 | 2x2 | 73856 |
ReLU3 | ReLU | 16x16x128 | 16x16x128 | - | - | 0 |
Flatten | Flatten | 16x16x128 | 32768 | - | - | 0 |
FC4 | Dense | 32768 | 512 | - | - | 16781312 |
FC_mean | Dense | 512 | 10 | - | - | 5130 |
FC_log_var | Dense | 512 | 10 | - | - | 5130 |
Sampling | Sampling | 10 | 10 | - | - | 0 |
FC5 | Dense | 10 | 512 | - | - | 5220 |
FC6 | Dense | 512 | 32768 | - | - | 16781312 |
Reshape | Reshape | 32768 | 16x16x128 | - | - | 0 |
Deconv1 | Conv2DTranspose | 16x16x128 | 32x32x64 | 3x3 | 2x2 | 73792 |
ReLU4 | ReLU | 32x32x64 | 32x32x64 | - | - | 0 |
Deconv2 | Conv2DTranspose | 32x32x64 | 64x64x32 | 3x3 | 2x2 | 18432 |
ReLU5 | ReLU | 64x64x32 | 64x64x32 | - | - | 0 |
Deconv3 | Conv2DTranspose | 64x64x32 | 128x128x3 | 3x3 | 2x2 | 864 |
Sigmoid | Sigmoid | 128x128x3 | 128x128x3 | - | - | 0 |
结构2(池化+上采样)
层名称 | 类型 | 输入大小(HWC) | 输出大小(HWC) | 核尺寸 | 步长 | 参数数量 |
---|
Input | - | 128x128x3 | - | - | - | 0 |
Conv1 | Conv2D | 128x128x3 | 128x128x32 | 3x3 | 1x1 | 896 |
ReLU1 | ReLU | 128x128x32 | 128x128x32 | - | - | 0 |
Pool1 | MaxPooling2D | 128x128x32 | 64x64x32 | 2x2 | 2x2 | 0 |
Conv2 | Conv2D | 64x64x32 | 64x64x64 | 3x3 | 1x1 | 18496 |
ReLU2 | ReLU | 64x64x64 | 64x64x64 | - | - | 0 |
Pool2 | MaxPooling2D | 64x64x64 | 32x32x64 | 2x2 | 2x2 | 0 |
Conv3 | Conv2D | 32x32x64 | 32x32x128 | 3x3 | 1x1 | 73856 |
ReLU3 | ReLU | 32x32x128 | 32x32x128 | - | - | 0 |
Pool3 | MaxPooling2D | 32x32x128 | 16x16x128 | 2x2 | 2x2 | 0 |
Flatten | Flatten | 16x16x128 | 32768 | - | - | 0 |
FC4 | Dense | 32768 | 512 | - | - | 16781312 |
FC_mean | Dense | 512 | 10 | - | - | 5130 |
FC_log_var | Dense | 512 | 10 | - | - | 5130 |
Sampling | Sampling | 10 | 10 | - | - | 0 |
FC5 | Dense | 10 | 512 | - | - | 5220 |
FC6 | Dense | 512 | 32768 | - | - | 16781312 |
Reshape | Reshape | 32768 | 16x16x128 | - | - | 0 |
Deconv1 | Conv2DTranspose | 16x16x128 | 32x32x64 | 3x3 | 1x1 | 73792 |
Upsample1 | UpSampling2D | 32x32x64 | 64x64x64 | 2x2 | 2x2 | 0 |
Deconv2 | Conv2DTranspose | 64x64x64 | 64x64x32 | 3x3 | 1x1 | 18432 |
Upsample2 | UpSampling2D | 64x64x32 | 128x128x32 | 2x2 | 2x2 | 0 |
Deconv3 | Conv2DTranspose | 128x128x32 | 128x128x3 | 3x3 | 1x1 | 864 |
Sigmoid | Sigmoid | 128x128x3 | 128x128x3 | - | - | 0 |
源码
import torch
import torch.nn as nn
import torch.nn.functional as F
class CVAE(nn.Module):
def __init__(self):
super(CVAE, self).__init__()
self.encoder = nn.Sequential(
nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2),
)
self.fc_mean = nn.Linear(16*16*128, 10)
self.fc_log_var = nn.Linear(16*16*128, 10)
self.decoder = nn.Sequential(
nn.Linear(10, 16*16*128),
nn.ReLU(),
nn.Unflatten(1, (128, 16, 16)),
nn.ConvTranspose2d(128, 64, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.UpSampling2d(scale_factor=2),
nn.ConvTranspose2d(64, 32, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.UpSampling2d(scale_factor=2),
nn.ConvTranspose2d(32, 3, kernel_size=3, stride=1, padding=1),
nn.Sigmoid(),
nn.UpSampling2d(scale_factor=2),
)
def reparameterize(self, mu, logvar):
std = torch.exp(0.5*logvar)
eps = torch.randn_like(std)
return mu + eps*std
def forward(self, x):
encoded = self.encoder(x)
encoded = encoded.view(encoded.size(0), -1)
mu = self.fc_mean(encoded)
logvar = self.fc_log_var(encoded)
z = self.reparameterize(mu, logvar)
decoded = self.decoder(z)
return decoded, mu, logvar
cvae = CVAE()
print(cvae)
UNET
结构
层名称 | 类型 | 输入大小 (HxWxC) | 输出大小 (HxWxC) | 核尺寸 | 步长 | 参数数量 |
---|
Input | - | 572x572x1 | - | - | - | - |
Conv2D_1 | Conv2D | 572x572x1 | 568x568x64 | 3x3 | 1 | 1728 |
BatchNorm_1 | BatchNorm | 568x568x64 | 568x568x64 | - | - | 256 |
ReLU_1 | ReLU | 568x568x64 | 568x568x64 | - | - | 0 |
MaxPool2D_1 | MaxPool2D | 568x568x64 | 284x284x64 | 2x2 | 2 | 0 |
Conv2D_2 | Conv2D | 284x284x64 | 280x280x128 | 3x3 | 1 | 18432 |
BatchNorm_2 | BatchNorm | 280x280x128 | 280x280x128 | - | - | 512 |
ReLU_2 | ReLU | 280x280x128 | 280x280x128 | - | - | 0 |
MaxPool2D_2 | MaxPool2D | 280x280x128 | 140x140x128 | 2x2 | 2 | 0 |
Conv2D_3 | Conv2D | 140x140x128 | 136x136x256 | 3x3 | 1 | 73728 |
BatchNorm_3 | BatchNorm | 136x136x256 | 136x136x256 | - | - | 1024 |
ReLU_3 | ReLU | 136x136x256 | 136x136x256 | - | - | 0 |
MaxPool2D_3 | MaxPool2D | 136x136x256 | 68x68x256 | 2x2 | 2 | 0 |
Conv2D_4 | Conv2D | 68x68x256 | 64x64x512 | 3x3 | 1 | 295040 |
BatchNorm_4 | BatchNorm | 64x64x512 | 64x64x512 | - | - | 2048 |
ReLU_4 | ReLU | 64x64x512 | 64x64x512 | - | - | 0 |
MaxPool2D_4 | MaxPool2D | 64x64x512 | 32x32x512 | 2x2 | 2 | 0 |
Conv2D_5 | Conv2D | 32x32x512 | 32x32x1024 | 3x3 | 1 | 1180160 |
BatchNorm_5 | BatchNorm | 32x32x1024 | 32x32x1024 | - | - | 4096 |
ReLU_5 | ReLU | 32x32x1024 | 32x32x1024 | - | - | 0 |
UpConv2D_1 | ConvTranspose | 32x32x1024 | 64x64x512 | 2x2 | 2 | 2099200 |
Concat_1 | Concat | 64x64x1536 | 64x64x1024 | - | - | 0 |
Conv2D_6 | Conv2D | 64x64x1024 | 64x64x512 | 3x3 | 1 | 524800 |
BatchNorm_6 | BatchNorm | 64x64x512 | 64x64x512 | - | - | 2048 |
ReLU_6 | ReLU | 64x64x512 | 64x64x512 | - | - | 0 |
UpConv2D_2 | ConvTranspose | 64x64x512 | 128x128x256 | 2x2 | 2 | 1049600 |
Concat_2 | Concat | 128x128x512 | 128x128x512 | - | - | 0 |
Conv2D_7 | Conv2D | 128x128x512 | 128x128x256 | 3x3 | 1 | 262400 |
BatchNorm_7 | BatchNorm | 128x128x256 | 128x128x256 | - | - | 1024 |
ReLU_7 | ReLU | 128x128x256 | 128x128x256 | - | - | 0 |
UpConv2D_3 | ConvTranspose | 128x128x256 | 256x256x128 | 2x2 | 2 | 524800 |
Concat_3 | Concat | 256x256x256 | 256x256x256 | - | - | 0 |
Conv2D_8 | Conv2D | 256x256x256 | 256x256x128 | 3x3 | 1 | 131200 |
BatchNorm_8 | BatchNorm | 256x256x128 | 256x256x128 | - | - | 512 |
ReLU_8 | ReLU | 256x256x128 | 256x256x128 | - | - | 0 |
UpConv2D_4 | ConvTranspose | 256x256x128 | 512x512x64 | 2x2 | 2 | 262400 |
Concat_4 | Concat | 512x512x128 | 512x512x128 | - | - | 0 |
Conv2D_9 | Conv2D | 512x512x128 | 512x512x64 | 3x3 | 1 | 64800 |
BatchNorm_9 | BatchNorm | 512x512x64 | 512x512x64 | - | - | 256 |
ReLU_9 | ReLU | 512x512x64 | 512x512x64 | - | - | 0 |
Conv2D_10 | Conv2D | 512x512x64 | 512x512x1 | 1x1 | 1 | 65 |
Sigmoid | Sigmoid | 512x512x1 | 512x512x1 | - | - | 0 |
源码
import torch
import torch.nn as nn
import torch.nn.functional as F
class UNet(nn.Module):
def __init__(self, in_channels=1, out_channels=1):
super(UNet, self).__init__()
self.conv1 = self.conv_block(in_channels, 64)
self.conv2 = self.conv_block(64, 128)
self.conv3 = self.conv_block(128, 256)
self.conv4 = self.conv_block(256, 512)
self.conv5 = self.conv_block(512, 1024)
self.upconv4 = self.up_conv_block(1024, 512)
self.upconv3 = self.up_conv_block(512, 256)
self.upconv2 = self.up_conv_block(256, 128)
self.upconv1 = self.up_conv_block(128, 64)
self.out = nn.Conv2d(64, out_channels, kernel_size=1)
def conv_block(self, in_channels, out_channels):
block = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
return block
def up_conv_block(self, in_channels, out_channels):
block = nn.Sequential(
nn.ConvTranspose2d(in_channels, out_channels, kernel_size=2, stride=2),
nn.ReLU(inplace=True)
)
return block
def forward(self, x):
enc1 = self.conv1(x)
enc2 = self.conv2(F.max_pool2d(enc1, 2))
enc3 = self.conv3(F.max_pool2d(enc2, 2))
enc4 = self.conv4(F.max_pool2d(enc3, 2))
enc5 = self.conv5(F.max_pool2d(enc4, 2))
dec4 = self.upconv4(enc5)
dec4 = torch.cat((enc4, dec4), dim=1)
dec3 = self.upconv3(dec4)
dec3 = torch.cat((enc3, dec3), dim=1)
dec2 = self.upconv2(dec3)
dec2 = torch.cat((enc2, dec2), dim=1)
dec1 = self.upconv1(dec2)
dec1 = torch.cat((enc1, dec1), dim=1)
out = self.out(dec1)
return out