二叉树常见的遍历方式包括层序遍历、前序遍历、中序遍历和后序遍历等。
面试官的题库,让一部分人先拿Offer!
从物理结构的角度来看,树是一种基于链表的数据结构,因此其遍历方式是通过指针逐个访问节点。然而,树是一种非线性数据结构,这使得遍历树比遍历链表更加复杂,需要借助搜索算法来实现。
二叉树常见的遍历方式包括层序遍历、前序遍历、中序遍历和后序遍历等。
层序遍历
如下图所示,层序遍历(level-order traversal)从顶部到底部逐层遍历二叉树,并在每一层按照从左到右的顺序访问节点。
层序遍历本质上属于广度优先遍历(breadth-first traversal),也称广度优先搜索(breadth-first search, BFS),它体现了一种“一圈一圈向外扩展”的逐层遍历方式。
代码实现
广度优先遍历通常借助“队列”来实现。队列遵循“先进先出”的规则,而广度优先遍历则遵循“逐层推进”的规则,两者背后的思想是一致的。实现代码如下
python:
def level_order(root: TreeNode | None) -> list[int]:
"""层序遍历"""
# 初始化队列,加入根节点
queue: deque[TreeNode] = deque()
queue.append(root)
# 初始化一个列表,用于保存遍历序列
res = []
while queue:
node: TreeNode = queue.popleft() # 队列出队
res.append(node.val) # 保存节点值
if node.left is not None:
queue.append(node.left) # 左子节点入队
if node.right is not None:
queue.append(node.right) # 右子节点入队
return res
kotlin:
/* 层序遍历 */
fun levelOrder(root: TreeNode?): MutableList<Int> {
// 初始化队列,加入根节点
val queue = LinkedList<TreeNode?>()
queue.add(root)
// 初始化一个列表,用于保存遍历序列
val list = mutableListOf<Int>()
while (queue.isNotEmpty()) {
val node = queue.poll() // 队列出队
list.add(node?._val!!) // 保存节点值
if (node.left != null)
queue.offer(node.left) // 左子节点入队
if (node.right != null)
queue.offer(node.right) // 右子节点入队
}
return list
}
复杂度分析
- 时间复杂度为 O(n) :所有节点被访问一次,使用 O(n) 时间,其中 n 为节点数量。
- 空间复杂度为 O(n) :在最差情况下,即满二叉树时,遍历到最底层之前,队列中最多同时存在 (n+1)/2 个节点,占用 O(n) 空间。
前序、中序、后序遍历
前序、中序和后序遍历都属于深度优先遍历(depth-first traversal),也称深度优先搜索(depth-first search, DFS),它体现了一种“先走到尽头,再回溯继续”的遍历方式。
下图 展示了对二叉树进行深度优先遍历的工作原理。深度优先遍历就像是绕着整棵二叉树的外围“走”一圈,在每个节点都会遇到三个位置,分别对应前序遍历、中序遍历和后序遍历。
代码实现
深度优先搜索通常基于递归实
python
def pre_order(root: TreeNode | None):
"""前序遍历"""
if root is None:
return
# 访问优先级:根节点 -> 左子树 -> 右子树
res.append(root.val)
pre_order(root=root.left)
pre_order(root=root.right)
def in_order(root: TreeNode | None):
"""中序遍历"""
if root is None:
return
# 访问优先级:左子树 -> 根节点 -> 右子树
in_order(root=root.left)
res.append(root.val)
in_order(root=root.right)
def post_order(root: TreeNode | None):
"""后序遍历"""
if root is None:
return
# 访问优先级:左子树 -> 右子树 -> 根节点
post_order(root=root.left)
post_order(root=root.right)
res.append(root.val)
kotlin
/* 前序遍历 */
fun preOrder(root: TreeNode?) {
if (root == null) return
// 访问优先级:根节点 -> 左子树 -> 右子树
list.add(root._val)
preOrder(root.left)
preOrder(root.right)
}
/* 中序遍历 */
fun inOrder(root: TreeNode?) {
if (root == null) return
// 访问优先级:左子树 -> 根节点 -> 右子树
inOrder(root.left)
list.add(root._val)
inOrder(root.right)
}
/* 后序遍历 */
fun postOrder(root: TreeNode?) {
if (root == null) return
// 访问优先级:左子树 -> 右子树 -> 根节点
postOrder(root.left)
postOrder(root.right)
list.add(root._val)
}
上图展示了前序遍历二叉树的递归过程,其可分为“递”和“归”两个逆向的部分。
- “递”表示开启新方法,程序在此过程中访问下一个节点。
- “归”表示函数返回,代表当前节点已经访问完毕
复杂度分析
- 时间复杂度为 O(n) :所有节点被访问一次,使用 O(n) 时间。
- 空间复杂度为 O(n) :在最差情况下,即树退化为链表时,递归深度达到 n ,系统占用 O(n) 栈帧空间。