Sometimes we want to construct parts of a chain at runtime, depending on the chain inputs (routing is the most common example of this). We can create dynamic chains like this using a very useful property of RunnableLambda's, which is that if a RunnableLambda returns a Runnable, that Runnable is itself invoked. Let's see an example. 有时我们想在运行时根据链输入构建链的某些部分(路由是最常见的例子)。我们可以使用 RunnableLambda 的一个非常有用的属性来创建这样的动态链,即如果 RunnableLambda 返回 Runnable,则该 Runnable 本身将被调用。让我们看一个例子。
pip install -qU langchain-openai
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass()
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(model="gpt-4o-mini")
# | echo: false
from langchain_anthropic import ChatAnthropic
llm = ChatAnthropic(model="claude-3-sonnet-20240229")
API Reference: ChatAnthropic
from operator import itemgetter
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import Runnable, RunnablePassthrough, chain
contextualize_instructions = """Convert the latest user question into a standalone question given the chat history. Don't answer the question, return the question and nothing else (no descriptive text)."""
contextualize_prompt = ChatPromptTemplate.from_messages(
[
("system", contextualize_instructions),
("placeholder", "{chat_history}"),
("human", "{question}"),
]
)
contextualize_question = contextualize_prompt | llm | StrOutputParser()
qa_instructions = (
"""Answer the user question given the following context:\n\n{context}."""
)
qa_prompt = ChatPromptTemplate.from_messages(
[("system", qa_instructions), ("human", "{question}")]
)
@chain
def contextualize_if_needed(input_: dict) -> Runnable:
if input_.get("chat_history"):
# NOTE: This is returning another Runnable, not an actual output.
return contextualize_question
else:
return RunnablePassthrough() | itemgetter("question")
@chain
def fake_retriever(input_: dict) -> str:
return "egypt's population in 2024 is about 111 million"
full_chain = (
RunnablePassthrough.assign(question=contextualize_if_needed).assign(
context=fake_retriever
)
| qa_prompt
| llm
| StrOutputParser()
)
full_chain.invoke(
{
"question": "what about egypt",
"chat_history": [
("human", "what's the population of indonesia"),
("ai", "about 276 million"),
],
}
)
API Reference: StrOutputParser | ChatPromptTemplate | Runnable | RunnablePassthrough | chain
"According to the context provided, Egypt's population in 2024 is estimated to be about 111 million."
The key here is that contextualize_if_needed
returns another Runnable and not an actual output. This returned Runnable is itself run when the full chain is executed.
这里的关键是 contextualize_if_needed 返回另一个 Runnable 而不是实际的输出。当执行完整链时,返回的 Runnable 本身就会运行。
Looking at the trace we can see that, since we passed in chat_history, we executed the contextualize_question chain as part of the full chain: smith.langchain.com/public/9e0a…
查看跟踪我们可以看到,自从我们传入 chat_history 以来,我们执行了 contextualize_question 链作为完整链的一部分:smith.langchain.com/public/9e0a…
Note that the streaming, batching, etc. capabilities of the returned Runnable are all preserved
注意返回的Runnable的流式处理、批处理等能力都被保留
for chunk in contextualize_if_needed.stream(
{
"question": "what about egypt",
"chat_history": [
("human", "what's the population of indonesia"),
("ai", "about 276 million"),
],
}
):
print(chunk)
What
is
the
population
of
Egypt
?