Android14 显示系统剖析8 ———— BufferQueueConsumer 消费帧缓存过程分析

1,513 阅读13分钟
  • 公众号:阿豪讲Framework
  • 系统教程:ahaoframework.tech/
  • 进 Android Framework 技术交流群加微信 zzh0838,备注进群

1. onFrameAvailable 整体流程

前文说到 onFrameAvailable 中会先调用 acquireNextBufferLocked 函数, 其实现如下

void BLASTBufferQueue::onFrameAvailable(const BufferItem& item) {
    std::function<void(SurfaceComposerClient::Transaction*)> prevCallback = nullptr;
    SurfaceComposerClient::Transaction* prevTransaction = nullptr;

    {
        UNIQUE_LOCK_WITH_ASSERTION(mMutex);
        BBQ_TRACE();
        bool waitForTransactionCallback = !mSyncedFrameNumbers.empty();

        const bool syncTransactionSet = mTransactionReadyCallback != nullptr;
        BQA_LOGV("onFrameAvailable-start syncTransactionSet=%s", boolToString(syncTransactionSet));

        if (syncTransactionSet) {
            // If we are going to re-use the same mSyncTransaction, release the buffer that may
            // already be set in the Transaction. This is to allow us a free slot early to continue
            // processing a new buffer.
            if (!mAcquireSingleBuffer) {
                auto bufferData = mSyncTransaction->getAndClearBuffer(mSurfaceControl);
                if (bufferData) {
                    BQA_LOGD("Releasing previous buffer when syncing: framenumber=%" PRIu64,
                             bufferData->frameNumber);
                    releaseBuffer(bufferData->generateReleaseCallbackId(),
                                  bufferData->acquireFence);
                }
            }

            if (waitForTransactionCallback) {
                // We are waiting on a previous sync's transaction callback so allow another sync
                // transaction to proceed.
                //
                // We need to first flush out the transactions that were in between the two syncs.
                // We do this by merging them into mSyncTransaction so any buffer merging will get
                // a release callback invoked.
                while (mNumFrameAvailable > 0) {
                    // flush out the shadow queue
                    acquireAndReleaseBuffer();
                }
            } else {
                // Make sure the frame available count is 0 before proceeding with a sync to ensure
                // the correct frame is used for the sync. The only way mNumFrameAvailable would be
                // greater than 0 is if we already ran out of buffers previously. This means we
                // need to flush the buffers before proceeding with the sync.
                while (mNumFrameAvailable > 0) {
                    BQA_LOGD("waiting until no queued buffers");
                    mCallbackCV.wait(_lock);
                }
            }
        }

        // add to shadow queue
        mNumFrameAvailable++;
        if (waitForTransactionCallback && mNumFrameAvailable >= 2) {
            acquireAndReleaseBuffer();
        }
        ATRACE_INT(mQueuedBufferTrace.c_str(),
                   mNumFrameAvailable + mNumAcquired - mPendingRelease.size());

        BQA_LOGV("onFrameAvailable framenumber=%" PRIu64 " syncTransactionSet=%s",
                 item.mFrameNumber, boolToString(syncTransactionSet));

        if (syncTransactionSet) {
            // Add to mSyncedFrameNumbers before waiting in case any buffers are released
            // while waiting for a free buffer. The release and commit callback will try to
            // acquire buffers if there are any available, but we don't want it to acquire
            // in the case where a sync transaction wants the buffer.
            mSyncedFrameNumbers.emplace(item.mFrameNumber);
            // If there's no available buffer and we're in a sync transaction, we need to wait
            // instead of returning since we guarantee a buffer will be acquired for the sync.
            // 获取 buffer ,构建并提交事务对象
            while (acquireNextBufferLocked(mSyncTransaction) == BufferQueue::NO_BUFFER_AVAILABLE) {
                BQA_LOGD("waiting for available buffer");
                mCallbackCV.wait(_lock);
            }

            // Only need a commit callback when syncing to ensure the buffer that's synced has been
            // sent to SF
            incStrong((void*)transactionCommittedCallbackThunk);
            mSyncTransaction->addTransactionCommittedCallback(transactionCommittedCallbackThunk,
                                                              static_cast<void*>(this));
            if (mAcquireSingleBuffer) {
                prevCallback = mTransactionReadyCallback;
                prevTransaction = mSyncTransaction;
                mTransactionReadyCallback = nullptr;
                mSyncTransaction = nullptr;
            }
        } else if (!waitForTransactionCallback) { // 走这里
            acquireNextBufferLocked(std::nullopt);
        }
    }
    if (prevCallback) {
        prevCallback(prevTransaction);
    }
}

这里代码考虑了多种情况,在我们的示例代码这里会用到 acquireNextBufferLocked:

status_t BLASTBufferQueue::acquireNextBufferLocked(
        const std::optional<SurfaceComposerClient::Transaction*> transaction) {
   
    //......

    // 准备事务对象 Transaction
    SurfaceComposerClient::Transaction localTransaction;
    bool applyTransaction = true;
    SurfaceComposerClient::Transaction* t = &localTransaction;
    if (transaction) {
        t = *transaction;
        applyTransaction = false;
    }

    // 调用 acquireBuffer 函数 从队列中获取到一个 BufferItem 对象
    BufferItem bufferItem;

    status_t status =
            mBufferItemConsumer->acquireBuffer(&bufferItem, 0 /* expectedPresent */, false);
    
    //......

    auto buffer = bufferItem.mGraphicBuffer;
    mNumFrameAvailable--;
    
    // ......

    mNumAcquired++;
    mLastAcquiredFrameNumber = bufferItem.mFrameNumber;
    ReleaseCallbackId releaseCallbackId(buffer->getId(), mLastAcquiredFrameNumber);
    mSubmitted[releaseCallbackId] = bufferItem;

    bool needsDisconnect = false;
    mBufferItemConsumer->getConnectionEvents(bufferItem.mFrameNumber, &needsDisconnect);

    // if producer disconnected before, notify SurfaceFlinger
    if (needsDisconnect) {
        t->notifyProducerDisconnect(mSurfaceControl);
    }

    // Ensure BLASTBufferQueue stays alive until we receive the transaction complete callback.
    incStrong((void*)transactionCallbackThunk);

    // Only update mSize for destination bounds if the incoming buffer matches the requested size.
    // Otherwise, it could cause stretching since the destination bounds will update before the
    // buffer with the new size is acquired.
    if (mRequestedSize == getBufferSize(bufferItem) ||
        bufferItem.mScalingMode != NATIVE_WINDOW_SCALING_MODE_FREEZE) {
        mSize = mRequestedSize;
    }
    Rect crop = computeCrop(bufferItem);
    mLastBufferInfo.update(true /* hasBuffer */, bufferItem.mGraphicBuffer->getWidth(),
                           bufferItem.mGraphicBuffer->getHeight(), bufferItem.mTransform,
                           bufferItem.mScalingMode, crop);

    // 构造一个回调对象
    auto releaseBufferCallback =
            std::bind(releaseBufferCallbackThunk, wp<BLASTBufferQueue>(this) /* callbackContext */,
                      std::placeholders::_1, std::placeholders::_2, std::placeholders::_3);
    
    // 这里会同时拿到 bufferItem 中的 fence 对象
    sp<Fence> fence = bufferItem.mFence ? new Fence(bufferItem.mFence->dup()) : Fence::NO_FENCE;
    // t 是准备提交给 SurfaceFlinger 的事务对象
    // 根据 bufferItem 来配置

    // 注意这里传入了回调对象
    t->setBuffer(mSurfaceControl, buffer, fence, bufferItem.mFrameNumber, mProducerId,
                 releaseBufferCallback);
    t->setDataspace(mSurfaceControl, static_cast<ui::Dataspace>(bufferItem.mDataSpace));
    t->setHdrMetadata(mSurfaceControl, bufferItem.mHdrMetadata);
    t->setSurfaceDamageRegion(mSurfaceControl, bufferItem.mSurfaceDamage);
    t->addTransactionCompletedCallback(transactionCallbackThunk, static_cast<void*>(this));

    mSurfaceControlsWithPendingCallback.push(mSurfaceControl);

    if (mUpdateDestinationFrame) {
        t->setDestinationFrame(mSurfaceControl, Rect(mSize));
    } else {
        const bool ignoreDestinationFrame =
                bufferItem.mScalingMode == NATIVE_WINDOW_SCALING_MODE_FREEZE;
        t->setFlags(mSurfaceControl,
                    ignoreDestinationFrame ? layer_state_t::eIgnoreDestinationFrame : 0,
                    layer_state_t::eIgnoreDestinationFrame);
    }
    t->setBufferCrop(mSurfaceControl, crop);
    t->setTransform(mSurfaceControl, bufferItem.mTransform);
    t->setTransformToDisplayInverse(mSurfaceControl, bufferItem.mTransformToDisplayInverse);
    t->setAutoRefresh(mSurfaceControl, bufferItem.mAutoRefresh);
    if (!bufferItem.mIsAutoTimestamp) {
        t->setDesiredPresentTime(bufferItem.mTimestamp);
    }

    // Drop stale frame timeline infos
    while (!mPendingFrameTimelines.empty() &&
           mPendingFrameTimelines.front().first < bufferItem.mFrameNumber) {
        ATRACE_FORMAT_INSTANT("dropping stale frameNumber: %" PRIu64 " vsyncId: %" PRId64,
                              mPendingFrameTimelines.front().first,
                              mPendingFrameTimelines.front().second.vsyncId);
        mPendingFrameTimelines.pop();
    }

    if (!mPendingFrameTimelines.empty() &&
        mPendingFrameTimelines.front().first == bufferItem.mFrameNumber) {
        ATRACE_FORMAT_INSTANT("Transaction::setFrameTimelineInfo frameNumber: %" PRIu64
                              " vsyncId: %" PRId64,
                              bufferItem.mFrameNumber,
                              mPendingFrameTimelines.front().second.vsyncId);
        t->setFrameTimelineInfo(mPendingFrameTimelines.front().second);
        mPendingFrameTimelines.pop();
    }

    {
        std::lock_guard _lock{mTimestampMutex};
        auto dequeueTime = mDequeueTimestamps.find(buffer->getId());
        if (dequeueTime != mDequeueTimestamps.end()) {
            Parcel p;
            p.writeInt64(dequeueTime->second);
            t->setMetadata(mSurfaceControl, gui::METADATA_DEQUEUE_TIME, p);
            mDequeueTimestamps.erase(dequeueTime);
        }
    }

    mergePendingTransactions(t, bufferItem.mFrameNumber);
    if (applyTransaction) { // 进入分支
        // All transactions on our apply token are one-way. See comment on mAppliedLastTransaction
        // 提交事务
        t->setApplyToken(mApplyToken).apply(false, true);
        mAppliedLastTransaction = true;
        mLastAppliedFrameNumber = bufferItem.mFrameNumber;
    } else {
        // 设置 barrier
        t->setBufferHasBarrier(mSurfaceControl, mLastAppliedFrameNumber);
        mAppliedLastTransaction = false;
    }

    BQA_LOGV("acquireNextBufferLocked size=%dx%d mFrameNumber=%" PRIu64
             " applyTransaction=%s mTimestamp=%" PRId64 "%s mPendingTransactions.size=%d"
             " graphicBufferId=%" PRIu64 "%s transform=%d",
             mSize.width, mSize.height, bufferItem.mFrameNumber, boolToString(applyTransaction),
             bufferItem.mTimestamp, bufferItem.mIsAutoTimestamp ? "(auto)" : "",
             static_cast<uint32_t>(mPendingTransactions.size()), bufferItem.mGraphicBuffer->getId(),
             bufferItem.mAutoRefresh ? " mAutoRefresh" : "", bufferItem.mTransform);
    return OK;
}

acquireNextBufferLocked 函数中会调用 BufferQueueConsumer::acquireBuffer 从队列中取出 BufferItem,接着取出 BufferItem 中的 GraphicBuffer 和 Fence 对象,然后构建事务对象 SurfaceComposerClient::Transaction,构建过程中会把 GraphicBuffer 和 Fence 对象以及一个回调对象 transactionCallbackThunk 都传入事务对象中,然后执行 apply 提交给 sf。

这里的 fence 是 App 调用 queueBuffer 的时候传入的,App 渲染完成后会调用该 fence 的 signal,通知到 sf 可以渲染这个 buffer 了。

BufferQueueConsumer::acquireBuffer 过程分析

接下来我们就来看 acquireBuffer 获取 buffer 的过程。

acquireBuffer() 从 mQueue 队列中取出 1 个 BufferItem,并作为出参返回给调用者,同时修改该 BufferItem 对应的 slot 状态:QUEUED —> ACQUIRED。

20190811210512644

动图来自 blog.csdn.net/hexiaolong2…

acquireBuffer()从mQueue队列中取出1个BufferItem,并作为出参返回给调用者,同时修改该 BufferItem 对应的 slot 状态:QUEUED —> ACQUIRED。

源码实现如下:

status_t BufferQueueConsumer::acquireBuffer(BufferItem* outBuffer,
        nsecs_t expectedPresent, uint64_t maxFrameNumber) {
    ATRACE_CALL();

    int numDroppedBuffers = 0;
    sp<IProducerListener> listener;
    {
        std::unique_lock<std::mutex> lock(mCore->mMutex);

        // Check that the consumer doesn't currently have the maximum number of
        // buffers acquired. We allow the max buffer count to be exceeded by one
        // buffer so that the consumer can successfully set up the newly acquired
        // buffer before releasing the old one.

        // 检查acquire的buffer的数量是否超出了限制
        int numAcquiredBuffers = 0;
        for (int s : mCore->mActiveBuffers) {
            if (mSlots[s].mBufferState.isAcquired()) {
                ++numAcquiredBuffers;
            }
        }
        const bool acquireNonDroppableBuffer = mCore->mAllowExtraAcquire &&
                numAcquiredBuffers == mCore->mMaxAcquiredBufferCount + 1;
        if (numAcquiredBuffers >= mCore->mMaxAcquiredBufferCount + 1 &&
            !acquireNonDroppableBuffer) {
            BQ_LOGE("acquireBuffer: max acquired buffer count reached: %d (max %d)",
                    numAcquiredBuffers, mCore->mMaxAcquiredBufferCount);
            return INVALID_OPERATION;
        }

        bool sharedBufferAvailable = mCore->mSharedBufferMode &&
                mCore->mAutoRefresh && mCore->mSharedBufferSlot !=
                BufferQueueCore::INVALID_BUFFER_SLOT;

        // In asynchronous mode the list is guaranteed to be one buffer deep,
        // while in synchronous mode we use the oldest buffer.
        if (mCore->mQueue.empty() && !sharedBufferAvailable) {
            return NO_BUFFER_AVAILABLE;
        }

        // 获取 BufferQueueCore 中的 mQueue 队列的迭代器
        BufferQueueCore::Fifo::iterator front(mCore->mQueue.begin());

        // If expectedPresent is specified, we may not want to return a buffer yet.
        // If it's specified and there's more than one buffer queued, we may want
        // to drop a buffer.
        // Skip this if we're in shared buffer mode and the queue is empty,
        // since in that case we'll just return the shared buffer.
        if (expectedPresent != 0 && !mCore->mQueue.empty()) {
            // The 'expectedPresent' argument indicates when the buffer is expected
            // to be presented on-screen. If the buffer's desired present time is
            // earlier (less) than expectedPresent -- meaning it will be displayed
            // on time or possibly late if we show it as soon as possible -- we
            // acquire and return it. If we don't want to display it until after the
            // expectedPresent time, we return PRESENT_LATER without acquiring it.
            //
            // To be safe, we don't defer acquisition if expectedPresent is more
            // than one second in the future beyond the desired present time
            // (i.e., we'd be holding the buffer for a long time).
            //
            // NOTE: Code assumes monotonic time values from the system clock
            // are positive.

            // Start by checking to see if we can drop frames. We skip this check if
            // the timestamps are being auto-generated by Surface. If the app isn't
            // generating timestamps explicitly, it probably doesn't want frames to
            // be discarded based on them.
            while (mCore->mQueue.size() > 1 && !mCore->mQueue[0].mIsAutoTimestamp) {
                const BufferItem& bufferItem(mCore->mQueue[1]);

                // If dropping entry[0] would leave us with a buffer that the
                // consumer is not yet ready for, don't drop it.
                if (maxFrameNumber && bufferItem.mFrameNumber > maxFrameNumber) {
                    break;
                }

                // If entry[1] is timely, drop entry[0] (and repeat). We apply an
                // additional criterion here: we only drop the earlier buffer if our
                // desiredPresent falls within +/- 1 second of the expected present.
                // Otherwise, bogus desiredPresent times (e.g., 0 or a small
                // relative timestamp), which normally mean "ignore the timestamp
                // and acquire immediately", would cause us to drop frames.
                //
                // We may want to add an additional criterion: don't drop the
                // earlier buffer if entry[1]'s fence hasn't signaled yet.
                nsecs_t desiredPresent = bufferItem.mTimestamp;
                if (desiredPresent < expectedPresent - MAX_REASONABLE_NSEC ||
                        desiredPresent > expectedPresent) {
                    // This buffer is set to display in the near future, or
                    // desiredPresent is garbage. Either way we don't want to drop
                    // the previous buffer just to get this on the screen sooner.
                    BQ_LOGV("acquireBuffer: nodrop desire=%" PRId64 " expect=%"
                            PRId64 " (%" PRId64 ") now=%" PRId64,
                            desiredPresent, expectedPresent,
                            desiredPresent - expectedPresent,
                            systemTime(CLOCK_MONOTONIC));
                    break;
                }

                BQ_LOGV("acquireBuffer: drop desire=%" PRId64 " expect=%" PRId64
                        " size=%zu",
                        desiredPresent, expectedPresent, mCore->mQueue.size());

                if (!front->mIsStale) {
                    // Front buffer is still in mSlots, so mark the slot as free
                    mSlots[front->mSlot].mBufferState.freeQueued();

                    // After leaving shared buffer mode, the shared buffer will
                    // still be around. Mark it as no longer shared if this
                    // operation causes it to be free.
                    if (!mCore->mSharedBufferMode &&
                            mSlots[front->mSlot].mBufferState.isFree()) {
                        mSlots[front->mSlot].mBufferState.mShared = false;
                    }

                    // Don't put the shared buffer on the free list
                    if (!mSlots[front->mSlot].mBufferState.isShared()) {
                        mCore->mActiveBuffers.erase(front->mSlot);
                        mCore->mFreeBuffers.push_back(front->mSlot);
                    }

                    if (mCore->mBufferReleasedCbEnabled) {
                        listener = mCore->mConnectedProducerListener;
                    }
                    ++numDroppedBuffers;
                }

                mCore->mQueue.erase(front);
                front = mCore->mQueue.begin();
            }

            // See if the front buffer is ready to be acquired
            nsecs_t desiredPresent = front->mTimestamp;
            bool bufferIsDue = desiredPresent <= expectedPresent ||
                    desiredPresent > expectedPresent + MAX_REASONABLE_NSEC;
            bool consumerIsReady = maxFrameNumber > 0 ?
                    front->mFrameNumber <= maxFrameNumber : true;
            if (!bufferIsDue || !consumerIsReady) {
                BQ_LOGV("acquireBuffer: defer desire=%" PRId64 " expect=%" PRId64
                        " (%" PRId64 ") now=%" PRId64 " frame=%" PRIu64
                        " consumer=%" PRIu64,
                        desiredPresent, expectedPresent,
                        desiredPresent - expectedPresent,
                        systemTime(CLOCK_MONOTONIC),
                        front->mFrameNumber, maxFrameNumber);
                ATRACE_NAME("PRESENT_LATER");
                return PRESENT_LATER;
            }

            BQ_LOGV("acquireBuffer: accept desire=%" PRId64 " expect=%" PRId64 " "
                    "(%" PRId64 ") now=%" PRId64, desiredPresent, expectedPresent,
                    desiredPresent - expectedPresent,
                    systemTime(CLOCK_MONOTONIC));
        }

        int slot = BufferQueueCore::INVALID_BUFFER_SLOT;

         // 共享Buffer模式下处理
        if (sharedBufferAvailable && mCore->mQueue.empty()) {
            // make sure the buffer has finished allocating before acquiring it
            mCore->waitWhileAllocatingLocked(lock);

            slot = mCore->mSharedBufferSlot;

            // Recreate the BufferItem for the shared buffer from the data that
            // was cached when it was last queued.
            outBuffer->mGraphicBuffer = mSlots[slot].mGraphicBuffer;
            outBuffer->mFence = Fence::NO_FENCE;
            outBuffer->mFenceTime = FenceTime::NO_FENCE;
            outBuffer->mCrop = mCore->mSharedBufferCache.crop;
            outBuffer->mTransform = mCore->mSharedBufferCache.transform &
                    ~static_cast<uint32_t>(
                    NATIVE_WINDOW_TRANSFORM_INVERSE_DISPLAY);
            outBuffer->mScalingMode = mCore->mSharedBufferCache.scalingMode;
            outBuffer->mDataSpace = mCore->mSharedBufferCache.dataspace;
            outBuffer->mFrameNumber = mCore->mFrameCounter;
            outBuffer->mSlot = slot;
            outBuffer->mAcquireCalled = mSlots[slot].mAcquireCalled;
            outBuffer->mTransformToDisplayInverse =
                    (mCore->mSharedBufferCache.transform &
                    NATIVE_WINDOW_TRANSFORM_INVERSE_DISPLAY) != 0;
            outBuffer->mSurfaceDamage = Region::INVALID_REGION;
            outBuffer->mQueuedBuffer = false;
            outBuffer->mIsStale = false;
            outBuffer->mAutoRefresh = mCore->mSharedBufferMode &&
                    mCore->mAutoRefresh;
        } else if (acquireNonDroppableBuffer && front->mIsDroppable) {
            BQ_LOGV("acquireBuffer: front buffer is not droppable");
            return NO_BUFFER_AVAILABLE;
        } else {
            // 示例代码走这里
            // 从front获取对应的slot index
            slot = front->mSlot;
            *outBuffer = *front;
        }

        ATRACE_BUFFER_INDEX(slot);

        BQ_LOGV("acquireBuffer: acquiring { slot=%d/%" PRIu64 " buffer=%p }",
                slot, outBuffer->mFrameNumber, outBuffer->mGraphicBuffer->handle);

        if (!outBuffer->mIsStale) {
            mSlots[slot].mAcquireCalled = true;
            // Don't decrease the queue count if the BufferItem wasn't
            // previously in the queue. This happens in shared buffer mode when
            // the queue is empty and the BufferItem is created above.
            if (mCore->mQueue.empty()) {
                mSlots[slot].mBufferState.acquireNotInQueue();
            } else {
                // 将BufferState状态改为acquire
                mSlots[slot].mBufferState.acquire();
            }
            mSlots[slot].mFence = Fence::NO_FENCE;
        }

        // If the buffer has previously been acquired by the consumer, set
        // mGraphicBuffer to NULL to avoid unnecessarily remapping this buffer
        // on the consumer side
        if (outBuffer->mAcquireCalled) {
            outBuffer->mGraphicBuffer = nullptr;
        }

        //将该Buffer从mQueue中移除
        mCore->mQueue.erase(front);

        // We might have freed a slot while dropping old buffers, or the producer
        // may be blocked waiting for the number of buffers in the queue to
        // decrease.
        mCore->mDequeueCondition.notify_all();

        ATRACE_INT(mCore->mConsumerName.string(),
                static_cast<int32_t>(mCore->mQueue.size()));
#ifndef NO_BINDER
        mCore->mOccupancyTracker.registerOccupancyChange(mCore->mQueue.size());
#endif
        VALIDATE_CONSISTENCY();
    }
    
    // 回调,通知生产者
    if (listener != nullptr) {
        for (int i = 0; i < numDroppedBuffers; ++i) {
            listener->onBufferReleased();
        }
    }

    return NO_ERROR;
}

主要就是这几件事情:

  • 判断BufferQueueCore中的mQueue是否为空,mQueue就是前面 BufferQueueProducer调用queueBuffer函数时,将buffer入队列的容器;
  • 取出对应的BufferSlot(会有一些判断规则,舍弃一些buffer);
  • 将BufferState改为acquire状态;
  • 将该Buffer从mQueue中移除;

releaseBufferCallback 回调分析

消费者 acquire 拿到 buffer 后又是怎样通知 release buffer 呢?

BLASTBufferQueue::acquireNextBufferLocked 函数中获取到 buffer 后,设置事务对象时会调用一个 setBuffer 函数,这个函数的最后一个参数 releaseBufferCallback 用于回调。

t->setBuffer(mSurfaceControl, buffer, fence, bufferItem.mFrameNumber, mProducerId,
                 releaseBufferCallback);

releaseBufferCallback 由 releaseBufferCallbackThunk 函数构造:

auto releaseBufferCallback =
            std::bind(releaseBufferCallbackThunk, wp<BLASTBufferQueue>(this) /* callbackContext */,
                      std::placeholders::_1, std::placeholders::_2, std::placeholders::_3);

SF 消费完这个 buffer,就会调用到这个回调函数。

关于 sf 如何消费 buffer 以及如何调用到回调函数,还有怎么利用 fence 来等待 GPU 合成等细节我们会在后续的章节来讲解(会涉及一些 vsync 的内容,讲解了 vsync 在来分析这一块),这里我们把 sf 消费 buffer 以及调用回调函数的过程作为黑盒即可。

目前我们知道 sf 消费完 buffer 后就会去调用回调函数:


tatic void releaseBufferCallbackThunk(wp<BLASTBufferQueue> context, const ReleaseCallbackId& id,
                                       const sp<Fence>& releaseFence,
                                       std::optional<uint32_t> currentMaxAcquiredBufferCount) {
    sp<BLASTBufferQueue> blastBufferQueue = context.promote();
    if (blastBufferQueue) {
        // 调用到这里
        blastBufferQueue->releaseBufferCallback(id, releaseFence, currentMaxAcquiredBufferCount);
    } else {
        ALOGV("releaseBufferCallbackThunk %s blastBufferQueue is dead", id.to_string().c_str());
    }
}

回调会调用到 BLASTBufferQueue 的 releaseBufferCallback 函数,有兴趣的可以跟下这个函数,最后会调用到 BufferQueueConsumer::releaseBuffer 函数:

BufferQueueConsumer::releaseBuffer 过程分析

  • releaseBuffer()根据调用者传入的 slot 参数,将其对应的 BufferSlot 状态从 ACQUIRED 修改为 FREE,并将该 slot 从 mActiveBuffers 中迁移到 mFreeBuffers 中。注意,这里并没有对该 slot 绑定的 buffer 进行任何解绑操作。
  • 调用 Producer 的 Listener 监听函数,通知 Producer 可以 dequeueBuffer 了。

20190811210512644

源码实现如下:

status_t BufferQueueConsumer::releaseBuffer(int slot, uint64_t frameNumber,
        const sp<Fence>& releaseFence, EGLDisplay eglDisplay,
        EGLSyncKHR eglFence) {
    ATRACE_CALL();
    ATRACE_BUFFER_INDEX(slot);

    if (slot < 0 || slot >= BufferQueueDefs::NUM_BUFFER_SLOTS ||
            releaseFence == nullptr) {
        BQ_LOGE("releaseBuffer: slot %d out of range or fence %p NULL", slot,
                releaseFence.get());
        return BAD_VALUE;
    }

    sp<IProducerListener> listener;
    { // Autolock scope
        std::lock_guard<std::mutex> lock(mCore->mMutex);

        // If the frame number has changed because the buffer has been reallocated,
        // we can ignore this releaseBuffer for the old buffer.
        // Ignore this for the shared buffer where the frame number can easily
        // get out of sync due to the buffer being queued and acquired at the
        // same time.
        if (frameNumber != mSlots[slot].mFrameNumber &&
                !mSlots[slot].mBufferState.isShared()) {
            return STALE_BUFFER_SLOT;
        }

        if (!mSlots[slot].mBufferState.isAcquired()) {
            BQ_LOGE("releaseBuffer: attempted to release buffer slot %d "
                    "but its state was %s", slot,
                    mSlots[slot].mBufferState.string());
            return BAD_VALUE;
        }

        mSlots[slot].mEglDisplay = eglDisplay;
        mSlots[slot].mEglFence = eglFence;
        // fence 存到 bufferSlot 中
        // 后续 App 又会取到
        mSlots[slot].mFence = releaseFence;
        mSlots[slot].mBufferState.release(); //置为FREE状态

        // After leaving shared buffer mode, the shared buffer will
        // still be around. Mark it as no longer shared if this
        // operation causes it to be free.
        if (!mCore->mSharedBufferMode && mSlots[slot].mBufferState.isFree()) {
            mSlots[slot].mBufferState.mShared = false;
        }
        // Don't put the shared buffer on the free list.
        if (!mSlots[slot].mBufferState.isShared()) {
            mCore->mActiveBuffers.erase(slot); // 从mActiveBuffers中删除
            mCore->mFreeBuffers.push_back(slot); //加入到mFreeBuffers中
        }

        if (mCore->mBufferReleasedCbEnabled) {
            listener = mCore->mConnectedProducerListener;
        }
        BQ_LOGV("releaseBuffer: releasing slot %d", slot);

        mCore->mDequeueCondition.notify_all();
        VALIDATE_CONSISTENCY();
    } // Autolock scope

    // Call back without lock held
    if (listener != nullptr) {
        listener->onBufferReleased(); //通知producer
    }

    return NO_ERROR;
}

releaseBuffer方法的流程相对简单:

  • slot 就是需要释放的 BufferSlot 的序号;
  • Buffer 对应的 FrameNumber 变了,可能 Buffer 已经重新分配,这个是不用管;
  • 只能释放 acquire 状态的 buffer 序号,释放后Buffer放回mFreeBuffers中;
  • releaseFence,从consumer那边传过来,producer可以dequeue mFreeBuffers中的buffer,但是只有releaseFence发信号出来后,consumer才真正用完,producer才可以写;
  • 最后通过 listener 通知 producer。

ProducerListener 通知 Producer

最后一个疑问?ProducerListener 如何通知到 Producer,通过回调:

listener->onBufferReleased(); //通知 producer

listener 来自 BuffeQueueCore 的 mConnectedProducerListener 成员。

listener = mCore->mConnectedProducerListener;

那么 mCore->mConnectedProducerListener 是在哪里被赋值的呢?

示例代码中有这样一句代码:

    igbProducer->connect(new StubProducerListener, NATIVE_WINDOW_API_CPU, false, &qbOutput);

接着看 connect 函数实现:

    status_t connect(const sp<IProducerListener>& listener, int api, bool producerControlledByApp,
                     QueueBufferOutput* output) override {

        if (!listener) {
            return BufferQueueProducer::connect(listener, api, producerControlledByApp, output);
        }

        // listener 不为空
        // 把 Listener 包装成 AsyncProducerListener
        return BufferQueueProducer::connect(new AsyncProducerListener(listener), api,
                                            producerControlledByApp, output);
    }

接着调用 BufferQueueProducer::connect 函数:

status_t BufferQueueProducer::connect(const sp<IProducerListener>& listener,
        int api, bool producerControlledByApp, QueueBufferOutput *output) {
    ATRACE_CALL();
    std::lock_guard<std::mutex> lock(mCore->mMutex);
    mConsumerName = mCore->mConsumerName;
    BQ_LOGV("connect: api=%d producerControlledByApp=%s", api,
            producerControlledByApp ? "true" : "false");

    if (mCore->mIsAbandoned) {
        BQ_LOGE("connect: BufferQueue has been abandoned");
        return NO_INIT;
    }

    if (mCore->mConsumerListener == nullptr) {
        BQ_LOGE("connect: BufferQueue has no consumer");
        return NO_INIT;
    }

    if (output == nullptr) {
        BQ_LOGE("connect: output was NULL");
        return BAD_VALUE;
    }

    if (mCore->mConnectedApi != BufferQueueCore::NO_CONNECTED_API) {
        BQ_LOGE("connect: already connected (cur=%d req=%d)",
                mCore->mConnectedApi, api);
        return BAD_VALUE;
    }

    int delta = mCore->getMaxBufferCountLocked(mCore->mAsyncMode,
            mDequeueTimeout < 0 ?
            mCore->mConsumerControlledByApp && producerControlledByApp : false,
            mCore->mMaxBufferCount) -
            mCore->getMaxBufferCountLocked();
    if (!mCore->adjustAvailableSlotsLocked(delta)) {
        BQ_LOGE("connect: BufferQueue failed to adjust the number of available "
                "slots. Delta = %d", delta);
        return BAD_VALUE;
    }

    int status = NO_ERROR;
    switch (api) {
        case NATIVE_WINDOW_API_EGL:
        case NATIVE_WINDOW_API_CPU: // 走这个 case
        case NATIVE_WINDOW_API_MEDIA:
        case NATIVE_WINDOW_API_CAMERA:
            mCore->mConnectedApi = api;

            output->width = mCore->mDefaultWidth;
            output->height = mCore->mDefaultHeight;
            output->transformHint = mCore->mTransformHintInUse = mCore->mTransformHint;
            output->numPendingBuffers =
                    static_cast<uint32_t>(mCore->mQueue.size());
            output->nextFrameNumber = mCore->mFrameCounter + 1;
            output->bufferReplaced = false;
            output->maxBufferCount = mCore->mMaxBufferCount;

            if (listener != nullptr) {
                // Set up a death notification so that we can disconnect
                // automatically if the remote producer dies
#ifndef NO_BINDER
                if (IInterface::asBinder(listener)->remoteBinder() != nullptr) {
                    status = IInterface::asBinder(listener)->linkToDeath(
                            static_cast<IBinder::DeathRecipient*>(this));
                    if (status != NO_ERROR) {
                        BQ_LOGE("connect: linkToDeath failed: %s (%d)",
                                strerror(-status), status);
                    }
                    mCore->mLinkedToDeath = listener;
                }
#endif
                // 重点
                mCore->mConnectedProducerListener = listener;
                mCore->mBufferReleasedCbEnabled = listener->needsReleaseNotify();
            }
            break;
        default:
            BQ_LOGE("connect: unknown API %d", api);
            status = BAD_VALUE;
            break;
    }
    mCore->mConnectedPid = BufferQueueThreadState::getCallingPid();
    mCore->mBufferHasBeenQueued = false;
    mCore->mDequeueBufferCannotBlock = false;
    mCore->mQueueBufferCanDrop = false;
    mCore->mLegacyBufferDrop = true;
    if (mCore->mConsumerControlledByApp && producerControlledByApp) {
        mCore->mDequeueBufferCannotBlock = mDequeueTimeout < 0;
        mCore->mQueueBufferCanDrop = mDequeueTimeout <= 0;
    }

    mCore->mAllowAllocation = true;
    VALIDATE_CONSISTENCY();
    return status;
}

所以回调的 Listener 就是 StubProducerListener

class StubProducerListener : public BnProducerListener {
public:
    virtual ~StubProducerListener();
    virtual void onBufferReleased() {}
    virtual bool needsReleaseNotify() { return false; }
};

不过 onBufferReleased 中,其实什么都没做。

所以这里回调了一个寂寞。实际大多数情况下,Producer 需要主动去请求 buffer。