@[toc]
前言
前面一些章节主要针对各种矩阵变换,模型变换、视图变换、投影变换、屏幕空间变换等等!这一节咱们补充一下多边形剪裁算法的内容,主要讲解一下为什么需要,以及介绍二、三维下三角形裁剪的基本思路。
正文
为什么需要多边形剪裁算法?
以三角形为例,经过了视图变换和投影变换后,咱们已经将三角形所有的顶点坐标转换成了裁剪空间的坐标,咱们得目标只是为了获得 [−1,1]3 包围盒内的顶点构成的三角形,但是必定有些三角形的顶点既有在立方体内部的,也有在外部的,这时候必定需要对其进行转化,从而变成内部的!
以二维举例:以下为三角形裁剪的示意图:

我们发现,其实二维下的三角形的顶点分支大致分为三类情况:
- (1)三角形的三个顶点都在可视坐标范围内。这种情况不需要裁剪
- (2)三角形的三个顶点既有可视坐标范围内,也有可视范围外。这种情况就是裁剪算法发挥的地方!
- (3)三角形的三个顶点都不在可视坐标范围内。这种情况不需要裁剪
我们发现上述的绿色三角形在可视范围内是一个类似楔形的四边形,这时候需要对其分割成两个三角形才行!其他更多情况,大家可自行画示意图理解即可!
前置知识
二维直线
直线方程:
二维空间下,直线方程一般有几种表达形式,如:y=kx+b,ax+by−c=0 等等,但是为了工程方面的应用,可以用向量进行表达,如下:
ax+by(ab)⋅(xy)=d=d
记 n=(ab) 且它为单位向量,p=(xy),则带入上式可得:n⋅p=d
上式表达的本质,可理解为:所有满足向 n 投影长度为d的点集合,示意图如下:

距离本质:
当d值变化时,表达的是沿着n 方向滑动的变化情况,当d>0,往n 指向的方向进行滑动,当d<0,往反方向滑动,当d==0 时,则表达过原点的直线!如下图所示:

点和直线距离关系:
当我们将空间中任一点 p0=(x0,y0),带入上述方程,究竟代表什么含义呢?
其实我们得到的就是 p0 在 n 上的一个投影,具体如下:
n⋅p0−d>0,则表示该点在直线的n方向正侧n⋅p0−d<0,则表示该点在直线的n方向反侧n⋅p0−d=0,则表示该点就在直线上
示意图如下所示:

三维平面
平面方程
根据二维直线表达,同理在三维中,一个平面方程可表达成:ax+by+cz=d,同理记 n=abc,p=xyz
则可得到 n⋅p=d
类似的当我们保证n为单位向量时,此关系式可以理解为三维空间中,所有满足向 n 投影长度为d的点集合,其实也就是一个平面,如下图所示:

距离本质:
当d值变化时,表达的是沿着n 方向滑动的变化情况,当d>0,往n 指向的方向进行滑动,当d<0,往反方向滑动,当d==0 时,则表达过平面的点!如下图所示:

点和直线距离关系:
当我们将空间中任一点 p0=(x0,y0,z0),带入上述方程,究竟代表什么含义呢?
其实我们得到的就是 p0 在 n 上的一个投影,具体如下:
n⋅p0−d>0,则表示该点在平面的n方向正侧n⋅p0−d<0,则表示该点在平面的n方向反侧n⋅p0−d=0,则表示该点就在平面上
示意图如下所示:

类似的,咱们也可以延伸思维,拓展到高维空间的对应表达形式,从而得出相应的结论!
Suntherland hodgman算法
基本介绍
Sutherland-Hodgman算法是一种用于多边形裁剪的经典计算机图形学算法。它的主要功能是将一个多边形裁剪到一个凸多边形窗口内,输出裁剪后的多边形。该算法由Ivan Sutherland和Gary Hodgman在1974年提出。
基本思想
Suntherland hodgman算法也叫逐边裁剪法,它将待裁剪目标多边形的每条边逐一与裁剪窗口的每条边比较,然后生成新的顶点集合,最终得到裁剪后的多边形。
二维举例
问题描述:
已知多边形有序顶点集合 V={v1,v2,...,vn} ,几组不同的窗口边线表达方程,如:n1∗p=d1,n2∗p=d2,n3∗p=d3,n4∗p=d4
核心思路:
- 遍历顶点集合的顺序顶点对 p1=(v1,v2),p2=(v2,v3),...,pn=(vn,v1) ,针对每次顶点对的顶点,带入直线方程进行判定内外情况,从而做出不同的顶点选择
- 针对每个窗口边线方程,进行迭代,得到最终顶点集。每一轮的输入顶点集为上一轮的输出,首轮迭代的输入为多边形有序顶点集!
遍历顶点对的不同情况
假设我们设顶点对的顶点对 (S,P),则有如下几种情况:

- 情况1:S外侧,P内侧 => 不选择顶点
- 情况2:S内侧,P外侧 => 选择交点I
- 情况3:S外侧,P内侧 => 先选择交点I,然后选择P
- 情况4:S内侧,P内侧 => 选择顶点P
算法举例1:
输入顶点集合:0、1、2,如下图:

依次考察右侧边线和顶点对(0,1),(1,2),(2,0) 的关系,然后做出不同的考察,最终得到顶点集 (0′,1,1′) ,咱们将这个结果作为输入,针对另外一测边线进行类似的操作,直到四条边线都迭代完成,最终得到的结果就是 (0′,1,1′)
算法举例2:
输入顶点集合:0、1、2
先考察上侧边,如下图:

得到结果顶点集合(0′,1,2,2′)
然后考察右侧边,如下图:

依次类推,另外两边,最终得到结果就是 (1,1′,2′′,0′)
算法补充:
1、三角形重建
上述得到了剪裁后的多边形顶点序列,但在图形学中,渲染基本以三角形为图元,所以一般还需要多一个步骤:三角形重建。
往往我们都是以第一个顶点固定,后两个顶点从后面以此类推。如上算法举例2结果为例,形成三角形(1,1′,2′′)和(1,2′′,0′)。
2、交点插值
当出现将内外侧与边线的交点作为顶点选择的时候,咱们如何计算这个交点的位置?又如何计算它的顶点颜色?uv坐标呢?
其实这个问题,在之前的直线插值早已解释过。如下图所示:

那么如何计算PS和边线的交点I呢?
已知P点和S点的属性值和位置,假设边线方程为 n⋅p=d ,将外侧顶点S带入,得到有向距离 ds=n⋅S,同理,也得到内侧顶点P的有向距离dp=n⋅P
这时候我们知道 ds>0且dp<0 ,前面的前置知识已经给出解释过了。这时候就可以利用之前的知识,求出权重 weight=ds/(ds−dp)
从而求出交点的属性,如下:
f(I)=weight∗f(P)+(1−weight)∗f(S)
三维拓展
在三维情况下,裁剪边变成了裁剪平面,维度上升而已,其实本质没有变化,这里简单介绍一下图形学中的应用。
一般来说,在透视除法之前,会将剪裁空间坐标系下的坐标,进行剪裁操作。从而保证透视除法后,得到正确的包围盒[−1,1]3 的NDC坐标,并且位于摄像机前方。
因此剪裁空间的坐标必须满足以下不等式:
wc>0−1<wcxc<1−1<wcyc<1−1<wczc<1
由于咱们需要之前类似的方程形式,所以进行转化为高维平面方程形式:
0∗xc+0∗yc+0∗zc+1∗wc>0−1∗xc+0∗yc+0∗zc+1∗wc>01∗xc+0∗yc+0∗zc+1∗wc>00∗xc+−1∗yc+0∗zc+1∗wc>00∗xc+1∗yc+0∗zc+1∗wc>00∗xc+0∗yc+−1∗zc+1∗wc>00∗xc+0∗yc+1∗zc+1∗wc>0
所以咱们就得到了 n⋅p=0 的边界方程表达式,n 就是上述每一个方程的系数组成的向量,如{0,0,0,1},{−1,0,0,1}等等,一共7组!
边界方程也有了,需要裁剪的多边形顶点也有了,思路也就类似二维,代码就是体力劳动喽!
结尾:你们的点赞 + 关注就是我创作的最大动力!加油!
希望对各位小伙伴能够有所帮助哦,有任何问题请评论或私信哦,有空一定会回复的哦!永远在学习的道路上伴你而行, 我是航火火,火一般的男人!