栈与队列

95 阅读5分钟

「栈」与「队列」是最常见的两个数据结构,并且在基础算法领域里也发挥着巨大的作用,应用十分广泛。

「栈」是一种 后进先出 的数据结构,是一种人为规定的,只能在一端(栈顶)进行插入和删除操作,并且在栈非空的情况下,只能查看 栈顶 的元素的线性数据结构。

使用栈的例子:

  • 进制的转换;
  • 在计算机中表达式的计算,几乎都和栈有着密不可分的关系;
  • 函数嵌套调用。嵌套调用(特殊的例子是递归)就是后面遇到的函数需要先执行;
  • 在处理「树」和「图」结构的一些问题中,使用栈的算法叫做 深度优先遍历;

经典例题

简化路径 - 中等

function simplifyPath(path: string): string {
    const pathArray = path.split('/')
    const resultArray = []
    pathArray.forEach((ele, index) => {
        switch(ele) {
                case '':
                    break
                case '..':
                    resultArray.pop()
                    break
                case '.':
                    break
                default:
                    resultArray.push(ele)
            }
    })
    return '/' + resultArray.join('/')
};

有效的括号 - 简单

function isValid(s: string): boolean {
    if (s.length % 2 !== 0) return false
    const sArray = s.split('')
    const sStack = ['']
    const sMap = {
        ')': '(',
        ']': '[',
        '}': '{'
    }
    sArray.forEach(el => {
        const stackTop = sStack.at(-1)
        if (sMap[el] === stackTop) {
            sStack.pop()
        } else {
            sStack.push(el)
        }
    })
    return sStack.length === 1
};

逆波兰表达式求值 - 中等

/**
 * @param {string[]} tokens
 * @return {number}
 */
var evalRPN = function(tokens) {
    const tokenArray = tokens
    const resultStack = []
    tokenArray.forEach(el => {
        const next = resultStack.pop()
        const prev = resultStack.pop()
        switch(el) {
            case '+':
                resultStack.push(prev + next)
            break
            case '-':
                resultStack.push(prev - next)
            break
            case '*':
                resultStack.push(prev * next)
            break
            case '/':       
                resultStack.push((Math.trunc(prev / next)))
            break
            default:
            resultStack.push(Number(el))
        }
    })
    return resultStack.pop()
};

去除重复字母 - 中等

var removeDuplicateLetters = function (s) {
	const arr = s.split("");
	const sMap = new Map();
	arr.forEach((el) => {
		const cur = sMap.get(el);
		if (cur) {
			sMap.set(el, cur + 1);
		} else {
			sMap.set(el, 1);
		}
	});
	const stack = [];
	for (let i = 0; i < arr.length; i++) {
		const cur = arr[i];
		if (stack.includes(cur)) {
			sMap.set(cur, sMap.get(cur) - 1);
			continue;
		}
		while (
			stack.length &&
			stack.at(-1).charCodeAt() > cur.charCodeAt() &&
			sMap.get(stack.at(-1))
		) {
			stack.pop();
		}
		stack.push(cur);
		sMap.set(cur, sMap.get(cur) - 1);
	}
	return stack.join("");
};

不同字符的最小子序列 - 中等

解法和去除重复字母一样

单调栈

单调栈不是一个新的数据结构,单调栈就是普通的栈。对单调栈中元素的加入和取出依然要满足「后进先出 」原则。叫它单调栈是因为:在解决一些特定问题的过程中,栈中的元素在数值上「恰好保持单调性」。

用单调栈解决的问题的特点是:找出当前元素左边(或者右边)第1个比当前元素大或者小的那个元素

经典例题

接雨水 - 困难

var trap = function (height) {
	const len = height.length;
	if (len < 3) return 0;
	const stack = [];
	let result = 0;
	for (let i = 0; i < len; i++) {
		const cur = height[i];
		while (stack.length && cur > height[stack.at(-1)]) {
			const bottom = stack.pop();
			if (!stack.length) break;
			const min = Math.min(cur, height[stack.at(-1)]);
			const h = min - height[bottom];
			const w = i - stack.at(-1) - 1;
			result += h * w;
		}
		stack.push(i);
	}
	return result;
};

每日温度 - 中等

var dailyTemperatures = function (temperatures) {
	const len = temperatures.length;
	const result = new Array(len).fill(0);
	const stack = [];
	for (let i = 0; i < len; i++) {
		const cur = temperatures[i];
		while (stack.length && cur > temperatures[stack.at(-1)]) {
			const index = stack.pop();
			result[index] = i - index;
		}
		stack.push(i);
	}
	return result;
};

下一个更大元素I - 简单

var nextGreaterElement = function (nums1, nums2) {
	const s2Map = new Map();
	const stack = [];
	for (let i = 0; i < nums2.length; i++) {
		const cur = nums2[i];
		while (stack.length && cur > nums2[stack.at(-1)]) {
			s2Map.set(nums2[stack.pop()], cur);
		}
		stack.push(i);
	}
	return nums1.map((el) => s2Map.get(el) || -1);
};

下一个更大元素II - 中等

var nextGreaterElements = function(nums) {
    const data = nums.concat(nums);
	const len = data.length;
	const result = new Array(nums.length).fill(-1);
	const stack = [];
	for (let i = 0; i < len; i++) {
		while (stack.length && data[stack.at(-1)] < data[i]) {
			if (result[stack.at(-1)]) {
				result[stack.at(-1)] = data[i];
			}
			stack.pop();
		}
		stack.push(i);
	}
	return result;
};

柱状图中的最大矩形 - 困难

var largestRectangleArea = function (heights) {
	const len = heights.length;
	if (len === 1) return heights[0];
	let max = 0;
	const stack = [];
	for (let i = 0; i < len; i++) {
		const cur = heights[i];
		while (stack.length && cur <= heights[stack.at(-1)]) {
			const h = heights[stack.pop()];
			let w;
			if (stack.length) {
				w = i - stack.at(-1) - 1;
			} else {
				w = i;
			}
			const area = w * h;
			max = Math.max(area, max);
		}
		stack.push(i);
	}

	while (stack.length) {
		const cur = heights[stack.pop()];
		if (!stack.length) {
			max = Math.max(max, cur * len);
		} else {
			max = Math.max(max, (len - stack.at(-1) - 1) * cur);
		}
	}

	return max;
};

链表中的下一个更大节点 - 中等

var nextLargerNodes = function (head) {
	const stack = [];
	const result = [];
	let count = 0;
	while (head && head.val) {
		const cur = head.val;
		result[count] = 0;
		while (stack.length && cur > stack.at(-1).value) {
			result[stack.at(-1).index] = cur;
			stack.pop();
		}
		stack.push({ index: count, value: cur });
		head = head.next;
		count++;
	}
	return result;
};

队列

「队列」是一种 先进先出 的数据结构。

使用队列的例子:

  • 访问网页的时候,同一时间有大量的用户同时向一个页面发送请求,服务器会把一些来不及处理的任务放进一个队列里,一旦服务器系统里的处理线程完成了当前任务后,就会到队列里取走一个未处理的请求;
  • 消息队列;
  • 在处理「树」或者「图」结构的一些问题中,使用队列的算法叫做「广度优先遍历」;

经典例题

用栈实现队列 - 简单

var MyQueue = function() {
    this.stack1 = []
    this.stack2 = []
};

/** 
 * @param {number} x
 * @return {void}
 */
MyQueue.prototype.push = function(x) {
    this.stack1.push(x)
};

/**
 * @return {number}
 */
MyQueue.prototype.pop = function() {
    const len = this.stack1.length
    for (let i = 0; i < len - 1; i++) {
        this.stack2.push(this.stack1.pop())
    }
    const result = this.stack1.pop()
    while(this.stack2.length) {
        this.stack1.push(this.stack2.pop())
    }
    return result
};

/**
 * @return {number}
 */
MyQueue.prototype.peek = function() {
    const len = this.stack1.length
    for (let i = 0; i < len - 1; i++) {
        this.stack2.push(this.stack1.pop())
    }
    const result = this.stack1.pop()
    this.stack2.push(result)
    while(this.stack2.length) {
        this.stack1.push(this.stack2.pop())
    }
    return result
};

/**
 * @return {boolean}
 */
MyQueue.prototype.empty = function() {
    return !this.stack1.length
};

/**
 * Your MyQueue object will be instantiated and called as such:
 * var obj = new MyQueue()
 * obj.push(x)
 * var param_2 = obj.pop()
 * var param_3 = obj.peek()
 * var param_4 = obj.empty()
 */

用队列实现栈 - 简单

var MyStack = function () {
	this.queue = [];
};

/**
 * @param {number} x
 * @return {void}
 */
MyStack.prototype.push = function (x) {
	this.queue.push(x);
	console.log("push", this.queue);
};

/**
 * @return {number}
 */
MyStack.prototype.pop = function () {
	const len = this.queue.length;
	let count = 1;
	while (count < len) {
		const cur = this.queue.shift();
		this.queue.push(cur);
		count++;
	}
	return this.queue.shift();
	console.log("pop", this.queue);
};

/**
 * @return {number}
 */
MyStack.prototype.top = function () {
	const len = this.queue.length;
	let count = 1;
	while (count < len) {
		const cur = this.queue.shift();
		this.queue.push(cur);
		count++;
	}
	const top = this.queue.shift();
	this.queue.push(top);
	console.log("top", this.queue);
	return top;
};

/**
 * @return {boolean}
 */
MyStack.prototype.empty = function () {
	return !this.queue.length;
};

/**
 * Your MyStack object will be instantiated and called as such:
 * var obj = new MyStack()
 * obj.push(x)
 * var param_2 = obj.pop()
 * var param_3 = obj.top()
 * var param_4 = obj.empty()
 */

最小栈 - 中等

var MinStack = function () {
	this.list = [];
	this.min = [Infinity];
	this.curMin = Number.MAX_SAFE_INTEGER;
};

/**
 * @param {number} val
 * @return {void}
 */
MinStack.prototype.push = function (val) {
	this.list.push(val);
	this.min.push(Math.min(this.min.at(-1), val));
};

/**
 * @return {void}
 */
MinStack.prototype.pop = function () {
	const pop = this.list.pop();
	this.min.pop();
	return pop;
};

/**
 * @return {number}
 */
MinStack.prototype.top = function () {
	return this.list.at(-1);
};

/**
 * @return {number}
 */
MinStack.prototype.getMin = function () {
	return this.min.at(-1);
};

/**
 * Your MinStack object will be instantiated and called as such:
 * var obj = new MinStack()
 * obj.push(val)
 * obj.pop()
 * var param_3 = obj.top()
 * var param_4 = obj.getMin()
 */

设计循环队列 - 中等

/**
 * @param {number} k
 */
var MyCircularQueue = function (k) {
    this.len = k + 1;
	this.queue = new Array(this.len);
	this.front = 0;
	this.end = 0;
};

/**
 * @param {number} value
 * @return {boolean}
 */
MyCircularQueue.prototype.enQueue = function (value) {
	if (this.isFull()) {
		return false;
	}
	this.queue[this.end] = value;
	this.end = (this.end + 1) % this.len;
	return true;
};

/**
 * @return {boolean}
 */
MyCircularQueue.prototype.deQueue = function () {
	if (this.isEmpty()) {
		return false;
	}
	this.front = (this.front + 1) % this.len;
	return true;
};

/**
 * @return {number}
 */
MyCircularQueue.prototype.Front = function () {
	if (this.isEmpty()) {
		return -1;
	}
	return this.queue[this.front];
};

/**
 * @return {number}
 */
MyCircularQueue.prototype.Rear = function () {
	if (this.isEmpty()) {
		return -1;
	}
	return this.queue[(this.end - 1 + this.len) % this.len];
};

/**
 * @return {boolean}
 */
MyCircularQueue.prototype.isEmpty = function () {
	return this.end === this.front;
};

/**
 * @return {boolean}
 */
MyCircularQueue.prototype.isFull = function () {
	return (this.end + 1) % this.len === this.front;
};

/**
 * Your MyCircularQueue object will be instantiated and called as such:
 * var obj = new MyCircularQueue(k)
 * var param_1 = obj.enQueue(value)
 * var param_2 = obj.deQueue()
 * var param_3 = obj.Front()
 * var param_4 = obj.Rear()
 * var param_5 = obj.isEmpty()
 * var param_6 = obj.isFull()
 */

设计循环双端队列 - 中等

/**
 * @param {number} k
 */
var MyCircularDeque = function (k) {
	this.len = k + 1;
	this.queue = new Array(this.len);
	this.front = 0;
	this.end = 0;
};

/**
 * @param {number} value
 * @return {boolean}
 */
MyCircularDeque.prototype.insertLast = function (value) {
	if (this.isFull()) {
		return false;
	}
	this.queue[this.end] = value;
	this.end = (this.end + 1) % this.len;
	return true;
};

/**
 * @param {number} value
 * @return {boolean}
 */
MyCircularDeque.prototype.insertFront = function (value) {
	if (this.isFull()) {
		return false;
	}
	this.front = (this.front - 1 + this.len) % this.len;
	this.queue[this.front] = value;
	return true;
};

/**
 * @return {boolean}
 */
MyCircularDeque.prototype.deleteFront = function () {
	if (this.isEmpty()) {
		return false;
	}
	this.front = (this.front + 1) % this.len;
	return true;
};

/**
 * @return {boolean}
 */
MyCircularDeque.prototype.deleteLast = function () {
	if (this.isEmpty()) {
		return false;
	}
	this.end = (this.end - 1 + this.len) % this.len;
	return true;
};

/**
 * @return {number}
 */
MyCircularDeque.prototype.getFront = function () {
	if (this.isEmpty()) {
		return -1;
	}
	return this.queue[this.front];
};

/**
 * @return {number}
 */
MyCircularDeque.prototype.getRear = function () {
	if (this.isEmpty()) {
		return -1;
	}
	return this.queue[(this.end - 1 + this.len) % this.len];
};

/**
 * @return {boolean}
 */
MyCircularDeque.prototype.isEmpty = function () {
	return this.front === this.end;
};

/**
 * @return {boolean}
 */
MyCircularDeque.prototype.isFull = function () {
	return (this.end + 1) % this.len === this.front;
};

/**
 * Your MyCircularDeque object will be instantiated and called as such:
 * var obj = new MyCircularDeque(k)
 * var param_1 = obj.insertFront(value)
 * var param_2 = obj.insertLast(value)
 * var param_3 = obj.deleteFront()
 * var param_4 = obj.deleteLast()
 * var param_5 = obj.getFront()
 * var param_6 = obj.getRear()
 * var param_7 = obj.isEmpty()
 * var param_8 = obj.isFull()
 */

单调队列

单调队列就是普通的队列,只不过在使用队列的过程中,根据问题的特点保持了队列的单调性。

经典例题

滑动窗口的最大值 - 困难

var maxSlidingWindow = function (nums, k) {
	const window = [];
	const result = [];
	const maxQueue = [];

	for (let i = 0; i < nums.length; i++) {
		const cur = nums[i];

		window.push(cur);

		if (!maxQueue.length) {
			maxQueue.push(cur);
		} else {
			while (maxQueue.length && cur > maxQueue.at(-1)) {
				maxQueue.pop();
			}

			maxQueue.push(cur);
		}

		if (window.length === k) {
			// 需要去掉的窗口元素
			const out = window.shift();

			let curMax = maxQueue[0];
			if (out === maxQueue[0]) {
				maxQueue.shift();
			}
			result.push(curMax);
		}
	}

	return result;
};

最后

参考文章: