Android开机流程-Kernel

273 阅读21分钟

Android开机流程

在这里插入图片描述

在这里插入图片描述

img

BootLoader

内核运行之前运行的一小段程序,初始化硬件设备,建立空间映射表。Bootloader是一个特殊的独立于内核的程序,是CPU复位后进入操作系统之前执行的一段代码。Bootloader完成由硬件启动到操作系统启动的过渡,从而为操作系统提供基本的运行环境,如初始化CPU、时钟、堆栈、存储器系统等。Bootloader功能类似于PC机的BIOS程序,其代码与CPU芯片的内核结构、具体型号、应用系统的配置及使用的操作系统等因素有关,因此不可能有通用的bootloader,开发时需要用户根据具体情况进行移植。嵌入式Linux系统中常用的Bootloader有armboot、redboot、blob、U-Boot、Bios-lt、Bootldr等,其中U-Boot是当前比较流行,功能比较强大的Bootloader,可以支持多种体系结构,但相对也比较复杂。硬件初始化完成之后,Bootloader将boot.img(kernel + ramdisk(ramdisk.img中主要是存放android启动后第一个用户进程init可执行文件和init.*.rc等相关启动脚本以及sbin目录下的adbd工具从flash上copy到RAM里面,然后CPU执行转向kernel

1,PBL(Primary Boot Loader) 启动时,CPU只开启了第一个核心 CPU Core 0,运行固件在ROM中,这部分是高通写死在芯片中的固件,外部开发人员是无法修改这部份的。

主要功能为: (1)系统安全环境的初始化,以确保后续的XBL中的APPS 能够正常运行。 (2)根据boot gpio的配置选择从什么设备启动操作系统(如 Nand,USB等)。 (3)通过检测GPIO判断是否进入Emergency Download mode,用户可以通过FILE来下载完整的系统镜像。 (4)通过L2 TCM来加载XBL1 ELF,OCIMEM 和 RPM CodeRAM 代码。

2、Extensible boot loader (XBL)

从XBL开始,跑的就是我们编译下载进eMMC/UFS的系统镜像了,在XBL中主要是初始化相关的硬件环境,及代码安全环境。

(1)初始化 Buses、DDR、Clocks、CDT,启动QSEE,QHEE,RPM_FW, XBL core images。 (2)使能memory dump through USB and Sahara(系统死机时memory dump),看门狗,RAM dump to SD support等功能。 (3)初始化 USB驱动,USB充电功能,温升检测,PMIC驱动初始化,和 DDR training模块。

3、XBL core (UEFI or LK,ABL(Android Boot Loader)

XBL core,就是之前的bootloader,主要功能就是初始化display驱动,提供fastboot功能,引导进入HLOS kernel操作系统

注意,在ABL中,同样也只有CPU Core0在工作,其他的CPU核以是在进入HLOS Kernel后才开始初始化启用的

Kernel

Kernel启动分为两个阶段:

\build\android\kernel\msm-4.14\init\main.c

1.内核引导阶段,通常使用汇编语言,kernel/msm-4.19/arch/arm/kernel/head.S和kernel/msm-4.19/arch/arm/kernel/head-common.S。

2.内核启动阶段,引导阶段调用start_kernel()进入启动阶段,/kernel/msm-4.19/init/main.c

启动Kernel的swapper进程(pid=0):该进程又称为idle进程, 系统初始化过程Kernel由无到有开创的第一个进程, 用于初始化进程管理、内存管理,加载Display,Camera Driver,Binder Driver等相关工作; 启动kthreadd进程(pid=2):是Linux系统的内核进程,会创建内核工作线程kworkder,软中断线程ksoftirqd,thermal等内核守护进程。kthreadd进程是所有内核进程的鼻祖

img

main.c:

#include "do_mounts.h"
​
static int kernel_init(void *);
​
extern void init_IRQ(void);
extern void fork_init(void);
extern void radix_tree_init(void);
​
/*
 * Debug helper: via this flag we know that we are in 'early bootup code'
 * where only the boot processor is running with IRQ disabled.  This means
 * two things - IRQ must not be enabled before the flag is cleared and some
 * operations which are not allowed with IRQ disabled are allowed while the
 * flag is set.
 */
bool early_boot_irqs_disabled __read_mostly;
​
enum system_states system_state __read_mostly;
EXPORT_SYMBOL(system_state);
​
/*
 * Boot command-line arguments
 */
#define MAX_INIT_ARGS CONFIG_INIT_ENV_ARG_LIMIT
#define MAX_INIT_ENVS CONFIG_INIT_ENV_ARG_LIMIT
​
extern void time_init(void);
/* Default late time init is NULL. archs can override this later. */
void (*__initdata late_time_init)(void);
​
/* Untouched command line saved by arch-specific code. */
char __initdata boot_command_line[COMMAND_LINE_SIZE];
/* Untouched saved command line (eg. for /proc) */
char *saved_command_line;
/* Command line for parameter parsing */
static char *static_command_line;
/* Command line for per-initcall parameter parsing */
static char *initcall_command_line;
​
static char *execute_command;
static char *ramdisk_execute_command;
​
/*
 * Used to generate warnings if static_key manipulation functions are used
 * before jump_label_init is called.
 */
bool static_key_initialized __read_mostly;
EXPORT_SYMBOL_GPL(static_key_initialized);
​
/*
 * If set, this is an indication to the drivers that reset the underlying
 * device before going ahead with the initialization otherwise driver might
 * rely on the BIOS and skip the reset operation.
 *
 * This is useful if kernel is booting in an unreliable environment.
 * For ex. kdump situation where previous kernel has crashed, BIOS has been
 * skipped and devices will be in unknown state.
 */
unsigned int reset_devices;
EXPORT_SYMBOL(reset_devices);
​
static int __init set_reset_devices(char *str)
{
    reset_devices = 1;
    return 1;
}
​
__setup("reset_devices", set_reset_devices);
​
static const char *argv_init[MAX_INIT_ARGS+2] = { "init", NULL, };
const char *envp_init[MAX_INIT_ENVS+2] = { "HOME=/", "TERM=linux", NULL, };
static const char *panic_later, *panic_param;
​
extern const struct obs_kernel_param __setup_start[], __setup_end[];
​
static bool __init obsolete_checksetup(char *line)
{
    const struct obs_kernel_param *p;
    bool had_early_param = false;
​
    p = __setup_start;
    do {
        int n = strlen(p->str);
        if (parameqn(line, p->str, n)) {
            if (p->early) {
                /* Already done in parse_early_param?
                 * (Needs exact match on param part).
                 * Keep iterating, as we can have early
                 * params and __setups of same names 8( */
                if (line[n] == '\0' || line[n] == '=')
                    had_early_param = true;
            } else if (!p->setup_func) {
                pr_warn("Parameter %s is obsolete, ignored\n",
                    p->str);
                return true;
            } else if (p->setup_func(line + n))
                return true;
        }
        p++;
    } while (p < __setup_end);
​
    return had_early_param;
}
​
/*
 * This should be approx 2 Bo*oMips to start (note initial shift), and will
 * still work even if initially too large, it will just take slightly longer
 */
unsigned long loops_per_jiffy = (1<<12);
EXPORT_SYMBOL(loops_per_jiffy);
​
static int __init debug_kernel(char *str)
{
    console_loglevel = CONSOLE_LOGLEVEL_DEBUG;
    return 0;
}
​
static int __init quiet_kernel(char *str)
{
    console_loglevel = CONSOLE_LOGLEVEL_QUIET;
    return 0;
}
​
early_param("debug", debug_kernel);
early_param("quiet", quiet_kernel);
​
static int __init loglevel(char *str)
{
    int newlevel;
​
    /*
     * Only update loglevel value when a correct setting was passed,
     * to prevent blind crashes (when loglevel being set to 0) that
     * are quite hard to debug
     */
    if (get_option(&str, &newlevel)) {
        console_loglevel = newlevel;
        return 0;
    }
​
    return -EINVAL;
}
early_param("loglevel", loglevel);
​
/* Change NUL term back to "=", to make "param" the whole string. */
static int __init repair_env_string(char *param, char *val,
                    const char *unused, void *arg)
{
    if (val) {
        /* param=val or param="val"? */
        if (val == param+strlen(param)+1)
            val[-1] = '=';
        else if (val == param+strlen(param)+2) {
            val[-2] = '=';
            memmove(val-1, val, strlen(val)+1);
            val--;
        } else
            BUG();
    }
    return 0;
}
​
/* Anything after -- gets handed straight to init. */
static int __init set_init_arg(char *param, char *val,
                   const char *unused, void *arg)
{
    unsigned int i;
​
    if (panic_later)
        return 0;
​
    repair_env_string(param, val, unused, NULL);
​
    for (i = 0; argv_init[i]; i++) {
        if (i == MAX_INIT_ARGS) {
            panic_later = "init";
            panic_param = param;
            return 0;
        }
    }
    argv_init[i] = param;
    return 0;
}
​
/*
 * Unknown boot options get handed to init, unless they look like
 * unused parameters (modprobe will find them in /proc/cmdline).
 */
static int __init unknown_bootoption(char *param, char *val,
                     const char *unused, void *arg)
{
    repair_env_string(param, val, unused, NULL);
​
    /* Handle obsolete-style parameters */
    if (obsolete_checksetup(param))
        return 0;
​
    /* Unused module parameter. */
    if (strchr(param, '.') && (!val || strchr(param, '.') < val))
        return 0;
​
    if (panic_later)
        return 0;
​
    if (val) {
        /* Environment option */
        unsigned int i;
        for (i = 0; envp_init[i]; i++) {
            if (i == MAX_INIT_ENVS) {
                panic_later = "env";
                panic_param = param;
            }
            if (!strncmp(param, envp_init[i], val - param))
                break;
        }
        envp_init[i] = param;
    } else {
        /* Command line option */
        unsigned int i;
        for (i = 0; argv_init[i]; i++) {
            if (i == MAX_INIT_ARGS) {
                panic_later = "init";
                panic_param = param;
            }
        }
        argv_init[i] = param;
    }
    return 0;
}
​
static int __init init_setup(char *str)
{
    unsigned int i;
​
    execute_command = str;
    /*
     * In case LILO is going to boot us with default command line,
     * it prepends "auto" before the whole cmdline which makes
     * the shell think it should execute a script with such name.
     * So we ignore all arguments entered _before_ init=... [MJ]
     */
    for (i = 1; i < MAX_INIT_ARGS; i++)
        argv_init[i] = NULL;
    return 1;
}
__setup("init=", init_setup);
​
static int __init rdinit_setup(char *str)
{
    unsigned int i;
​
    ramdisk_execute_command = str;
    /* See "auto" comment in init_setup */
    for (i = 1; i < MAX_INIT_ARGS; i++)
        argv_init[i] = NULL;
    return 1;
}
__setup("rdinit=", rdinit_setup);
​
#ifndef CONFIG_SMP
static const unsigned int setup_max_cpus = NR_CPUS;
static inline void setup_nr_cpu_ids(void) { }
static inline void smp_prepare_cpus(unsigned int maxcpus) { }
#endif/*
 * We need to store the untouched command line for future reference.
 * We also need to store the touched command line since the parameter
 * parsing is performed in place, and we should allow a component to
 * store reference of name/value for future reference.
 */
static void __init setup_command_line(char *command_line)
{
    saved_command_line =
        memblock_virt_alloc(strlen(boot_command_line) + 1, 0);
    initcall_command_line =
        memblock_virt_alloc(strlen(boot_command_line) + 1, 0);
    static_command_line = memblock_virt_alloc(strlen(command_line) + 1, 0);
    strcpy(saved_command_line, boot_command_line);
    strcpy(static_command_line, command_line);
}
​
/*
 * We need to finalize in a non-__init function or else race conditions
 * between the root thread and the init thread may cause start_kernel to
 * be reaped by free_initmem before the root thread has proceeded to
 * cpu_idle.
 *
 * gcc-3.4 accidentally inlines this function, so use noinline.
 */
​
static __initdata DECLARE_COMPLETION(kthreadd_done);
​
static noinline void __ref rest_init(void)
{
    struct task_struct *tsk;
    int pid;
​
    rcu_scheduler_starting();
    /*
     * We need to spawn init first so that it obtains pid 1, however
     * the init task will end up wanting to create kthreads, which, if
     * we schedule it before we create kthreadd, will OOPS.
     */
    pid = kernel_thread(kernel_init, NULL, CLONE_FS);
    /*
     * Pin init on the boot CPU. Task migration is not properly working
     * until sched_init_smp() has been run. It will set the allowed
     * CPUs for init to the non isolated CPUs.
     */
    rcu_read_lock();
    tsk = find_task_by_pid_ns(pid, &init_pid_ns);
    set_cpus_allowed_ptr(tsk, cpumask_of(smp_processor_id()));
    rcu_read_unlock();
​
    numa_default_policy();
    pid = kernel_thread(kthreadd, NULL, CLONE_FS | CLONE_FILES);
    rcu_read_lock();
    kthreadd_task = find_task_by_pid_ns(pid, &init_pid_ns);
    rcu_read_unlock();
​
    /*
     * Enable might_sleep() and smp_processor_id() checks.
     * They cannot be enabled earlier because with CONFIG_PRREMPT=y
     * kernel_thread() would trigger might_sleep() splats. With
     * CONFIG_PREEMPT_VOLUNTARY=y the init task might have scheduled
     * already, but it's stuck on the kthreadd_done completion.
     */
    system_state = SYSTEM_SCHEDULING;
​
    complete(&kthreadd_done);
​
    /*
     * The boot idle thread must execute schedule()
     * at least once to get things moving:
     */
    schedule_preempt_disabled();
    /* Call into cpu_idle with preempt disabled */
    cpu_startup_entry(CPUHP_ONLINE);
}
​
/* Check for early params. */
static int __init do_early_param(char *param, char *val,
                 const char *unused, void *arg)
{
    const struct obs_kernel_param *p;
​
    for (p = __setup_start; p < __setup_end; p++) {
        if ((p->early && parameq(param, p->str)) ||
            (strcmp(param, "console") == 0 &&
             strcmp(p->str, "earlycon") == 0)
        ) {
            if (p->setup_func(val) != 0)
                pr_warn("Malformed early option '%s'\n", param);
        }
    }
    /* We accept everything at this stage. */
    return 0;
}
​
void __init parse_early_options(char *cmdline)
{
    parse_args("early options", cmdline, NULL, 0, 0, 0, NULL,
           do_early_param);
}
​
/* Arch code calls this early on, or if not, just before other parsing. */
void __init parse_early_param(void)
{
    static int done __initdata;
    static char tmp_cmdline[COMMAND_LINE_SIZE] __initdata;
​
    if (done)
        return;
​
    /* All fall through to do_early_param. */
    strlcpy(tmp_cmdline, boot_command_line, COMMAND_LINE_SIZE);
    parse_early_options(tmp_cmdline);
    done = 1;
}
​
void __init __weak arch_post_acpi_subsys_init(void) { }
​
void __init __weak smp_setup_processor_id(void)
{
}
​
# if THREAD_SIZE >= PAGE_SIZE
void __init __weak thread_stack_cache_init(void)
{
}
#endif
​
void __init __weak mem_encrypt_init(void) { }
​
/*
 * Set up kernel memory allocators
 */
static void __init mm_init(void)
{
    /*
     * page_ext requires contiguous pages,
     * bigger than MAX_ORDER unless SPARSEMEM.
     */
    page_ext_init_flatmem();
    mem_init();
    kmem_cache_init();
    pgtable_init();
    vmalloc_init();
    ioremap_huge_init();
    /* Should be run before the first non-init thread is created */
    init_espfix_bsp();
    /* Should be run after espfix64 is set up. */
    pti_init();
}
​
asmlinkage __visible void __init start_kernel(void)
{
    char *command_line;
    char *after_dashes;
​
    set_task_stack_end_magic(&init_task);
    smp_setup_processor_id();
    debug_objects_early_init();
​
    cgroup_init_early();
​
    local_irq_disable();
    early_boot_irqs_disabled = true;
​
    /*
     * Interrupts are still disabled. Do necessary setups, then
     * enable them.
     */
    boot_cpu_init();
    page_address_init();
    pr_notice("%s", linux_banner);
    setup_arch(&command_line);
    /*
     * Set up the the initial canary and entropy after arch
     * and after adding latent and command line entropy.
     */
    add_latent_entropy();
    add_device_randomness(command_line, strlen(command_line));
    boot_init_stack_canary();
    mm_init_cpumask(&init_mm);
    setup_command_line(command_line);
    setup_nr_cpu_ids();
    setup_per_cpu_areas();
    smp_prepare_boot_cpu(); /* arch-specific boot-cpu hooks */
    boot_cpu_hotplug_init();
​
    build_all_zonelists(NULL);
    page_alloc_init();
​
    pr_notice("Kernel command line: %s\n", boot_command_line);
    parse_early_param();
    after_dashes = parse_args("Booting kernel",
                  static_command_line, __start___param,
                  __stop___param - __start___param,
                  -1, -1, NULL, &unknown_bootoption);
    if (!IS_ERR_OR_NULL(after_dashes))
        parse_args("Setting init args", after_dashes, NULL, 0, -1, -1,
               NULL, set_init_arg);
​
    jump_label_init();
​
    /*
     * These use large bootmem allocations and must precede
     * kmem_cache_init()
     */
    setup_log_buf(0);
    pidhash_init();
    vfs_caches_init_early();
    sort_main_extable();
    trap_init();
    mm_init();
​
    ftrace_init();
​
    /* trace_printk can be enabled here */
    early_trace_init();
​
    /*
     * Set up the scheduler prior starting any interrupts (such as the
     * timer interrupt). Full topology setup happens at smp_init()
     * time - but meanwhile we still have a functioning scheduler.
     */
    sched_init();
    /*
     * Disable preemption - early bootup scheduling is extremely
     * fragile until we cpu_idle() for the first time.
     */
    preempt_disable();
    if (WARN(!irqs_disabled(),
         "Interrupts were enabled *very* early, fixing it\n"))
        local_irq_disable();
    radix_tree_init();
​
    /*
     * Allow workqueue creation and work item queueing/cancelling
     * early.  Work item execution depends on kthreads and starts after
     * workqueue_init().
     */
    workqueue_init_early();
​
    rcu_init();
​
    /* Trace events are available after this */
    trace_init();
​
    context_tracking_init();
    /* init some links before init_ISA_irqs() */
    early_irq_init();
    init_IRQ();
    tick_init();
    rcu_init_nohz();
    init_timers();
    hrtimers_init();
    softirq_init();
    timekeeping_init();
    time_init();
    sched_clock_postinit();
    printk_safe_init();
    perf_event_init();
    profile_init();
    call_function_init();
    WARN(!irqs_disabled(), "Interrupts were enabled early\n");
    early_boot_irqs_disabled = false;
    local_irq_enable();
​
    kmem_cache_init_late();
​
    /*
     * HACK ALERT! This is early. We're enabling the console before
     * we've done PCI setups etc, and console_init() must be aware of
     * this. But we do want output early, in case something goes wrong.
     */
    console_init();
    if (panic_later)
        panic("Too many boot %s vars at `%s'", panic_later,
              panic_param);
​
    lockdep_info();
​
    /*
     * Need to run this when irqs are enabled, because it wants
     * to self-test [hard/soft]-irqs on/off lock inversion bugs
     * too:
     */
    locking_selftest();
​
    /*
     * This needs to be called before any devices perform DMA
     * operations that might use the SWIOTLB bounce buffers. It will
     * mark the bounce buffers as decrypted so that their usage will
     * not cause "plain-text" data to be decrypted when accessed.
     */
    mem_encrypt_init();
​
#ifdef CONFIG_BLK_DEV_INITRD
    if (initrd_start && !initrd_below_start_ok &&
        page_to_pfn(virt_to_page((void *)initrd_start)) < min_low_pfn) {
        pr_crit("initrd overwritten (0x%08lx < 0x%08lx) - disabling it.\n",
            page_to_pfn(virt_to_page((void *)initrd_start)),
            min_low_pfn);
        initrd_start = 0;
    }
    #endif
    kmemleak_init();
    debug_objects_mem_init();
    setup_per_cpu_pageset();
    numa_policy_init();
    if (late_time_init)
        late_time_init();
    calibrate_delay();
    pidmap_init();
    anon_vma_init();
    acpi_early_init();
#ifdef CONFIG_X86
    if (efi_enabled(EFI_RUNTIME_SERVICES))
        efi_enter_virtual_mode();
#endif
    thread_stack_cache_init();
    cred_init();
    fork_init();
    proc_caches_init();
    buffer_init();
    key_init();
    security_init();
    dbg_late_init();
    vfs_caches_init();
    pagecache_init();
    signals_init();
    proc_root_init();
    nsfs_init();
    cpuset_init();
    cgroup_init();
    taskstats_init_early();
    delayacct_init();
​
    check_bugs();
​
    acpi_subsystem_init();
    arch_post_acpi_subsys_init();
    sfi_init_late();
​
    if (efi_enabled(EFI_RUNTIME_SERVICES)) {
        efi_free_boot_services();
    }
​
    /* Do the rest non-__init'ed, we're now alive */
    rest_init();
}
​
/* Call all constructor functions linked into the kernel. */
static void __init do_ctors(void)
{
#ifdef CONFIG_CONSTRUCTORS
    ctor_fn_t *fn = (ctor_fn_t *) __ctors_start;
​
    for (; fn < (ctor_fn_t *) __ctors_end; fn++)
        (*fn)();
#endif
}
​
bool initcall_debug;
core_param(initcall_debug, initcall_debug, bool, 0644);
​
#ifdef CONFIG_KALLSYMS
struct blacklist_entry {
    struct list_head next;
    char *buf;
};
​
static __initdata_or_module LIST_HEAD(blacklisted_initcalls);
​
static int __init initcall_blacklist(char *str)
{
    char *str_entry;
    struct blacklist_entry *entry;
​
    /* str argument is a comma-separated list of functions */
    do {
        str_entry = strsep(&str, ",");
        if (str_entry) {
            pr_debug("blacklisting initcall %s\n", str_entry);
            entry = alloc_bootmem(sizeof(*entry));
            entry->buf = alloc_bootmem(strlen(str_entry) + 1);
            strcpy(entry->buf, str_entry);
            list_add(&entry->next, &blacklisted_initcalls);
        }
    } while (str_entry);
​
    return 0;
}
​
static bool __init_or_module initcall_blacklisted(initcall_t fn)
{
    struct blacklist_entry *entry;
    char fn_name[KSYM_SYMBOL_LEN];
    unsigned long addr;
​
    if (list_empty(&blacklisted_initcalls))
        return false;
​
    addr = (unsigned long) dereference_function_descriptor(fn);
    sprint_symbol_no_offset(fn_name, addr);
​
    /*
     * fn will be "function_name [module_name]" where [module_name] is not
     * displayed for built-in init functions.  Strip off the [module_name].
     */
    strreplace(fn_name, ' ', '\0');
​
    list_for_each_entry(entry, &blacklisted_initcalls, next) {
        if (!strcmp(fn_name, entry->buf)) {
            pr_debug("initcall %s blacklisted\n", fn_name);
            return true;
        }
    }
​
    return false;
}
#else
static int __init initcall_blacklist(char *str)
{
    pr_warn("initcall_blacklist requires CONFIG_KALLSYMS\n");
    return 0;
}
​
static bool __init_or_module initcall_blacklisted(initcall_t fn)
{
    return false;
}
#endif
__setup("initcall_blacklist=", initcall_blacklist);
​
static int __init_or_module do_one_initcall_debug(initcall_t fn)
{
    ktime_t calltime, delta, rettime;
    unsigned long long duration;
    int ret;
​
    printk(KERN_DEBUG "calling  %pF @ %i\n", fn, task_pid_nr(current));
    calltime = ktime_get();
    ret = fn();
    rettime = ktime_get();
    delta = ktime_sub(rettime, calltime);
    duration = (unsigned long long) ktime_to_ns(delta) >> 10;
    printk(KERN_DEBUG "initcall %pF returned %d after %lld usecs\n",
         fn, ret, duration);
​
    return ret;
}
​
int __init_or_module do_one_initcall(initcall_t fn)
{
    int count = preempt_count();
    int ret;
    char msgbuf[64];
​
    if (initcall_blacklisted(fn))
        return -EPERM;
​
    if (initcall_debug)
        ret = do_one_initcall_debug(fn);
    else
        ret = fn();
​
    msgbuf[0] = 0;
​
    if (preempt_count() != count) {
        sprintf(msgbuf, "preemption imbalance ");
        preempt_count_set(count);
    }
    if (irqs_disabled()) {
        strlcat(msgbuf, "disabled interrupts ", sizeof(msgbuf));
        local_irq_enable();
    }
    WARN(msgbuf[0], "initcall %pF returned with %s\n", fn, msgbuf);
​
    add_latent_entropy();
    return ret;
}
​
​
extern initcall_t __initcall_start[];
extern initcall_t __initcall0_start[];
extern initcall_t __initcall1_start[];
extern initcall_t __initcall2_start[];
extern initcall_t __initcall3_start[];
extern initcall_t __initcall4_start[];
extern initcall_t __initcall5_start[];
extern initcall_t __initcall6_start[];
extern initcall_t __initcall7_start[];
extern initcall_t __initcall_end[];
​
static initcall_t *initcall_levels[] __initdata = {
    __initcall0_start,
    __initcall1_start,
    __initcall2_start,
    __initcall3_start,
    __initcall4_start,
    __initcall5_start,
    __initcall6_start,
    __initcall7_start,
    __initcall_end,
};
​
/* Keep these in sync with initcalls in include/linux/init.h */
static char *initcall_level_names[] __initdata = {
    "early",
    "core",
    "postcore",
    "arch",
    "subsys",
    "fs",
    "device",
    "late",
};
​
static void __init do_initcall_level(int level)
{
    initcall_t *fn;
​
    strcpy(initcall_command_line, saved_command_line);
    parse_args(initcall_level_names[level],
           initcall_command_line, __start___param,
           __stop___param - __start___param,
           level, level,
           NULL, &repair_env_string);
​
    for (fn = initcall_levels[level]; fn < initcall_levels[level+1]; fn++)
        do_one_initcall(*fn);
}
​
static void __init do_initcalls(void)
{
    int level;
​
    for (level = 0; level < ARRAY_SIZE(initcall_levels) - 1; level++)
        do_initcall_level(level);
}
​
/*
 * Ok, the machine is now initialized. None of the devices
 * have been touched yet, but the CPU subsystem is up and
 * running, and memory and process management works.
 *
 * Now we can finally start doing some real work..
 */
static void __init do_basic_setup(void)
{
    cpuset_init_smp();
    shmem_init();
    driver_init();
    init_irq_proc();
    do_ctors();
    usermodehelper_enable();
    do_initcalls();
}
​
static void __init do_pre_smp_initcalls(void)
{
    initcall_t *fn;
​
    for (fn = __initcall_start; fn < __initcall0_start; fn++)
        do_one_initcall(*fn);
}
​
/*
 * This function requests modules which should be loaded by default and is
 * called twice right after initrd is mounted and right before init is
 * exec'd.  If such modules are on either initrd or rootfs, they will be
 * loaded before control is passed to userland.
 */
void __init load_default_modules(void)
{
    load_default_elevator_module();
}
​
static int run_init_process(const char *init_filename)
{
    argv_init[0] = init_filename;
    return do_execve(getname_kernel(init_filename),
        (const char __user *const __user *)argv_init,
        (const char __user *const __user *)envp_init);
}
​
static int try_to_run_init_process(const char *init_filename)
{
    int ret;
​
    ret = run_init_process(init_filename);
​
    if (ret && ret != -ENOENT) {
        pr_err("Starting init: %s exists but couldn't execute it (error %d)\n",
               init_filename, ret);
    }
​
    return ret;
}
​
static noinline void __init kernel_init_freeable(void);
​
#if defined(CONFIG_STRICT_KERNEL_RWX) || defined(CONFIG_STRICT_MODULE_RWX)
bool rodata_enabled __ro_after_init = true;
static int __init set_debug_rodata(char *str)
{
    return strtobool(str, &rodata_enabled);
}
__setup("rodata=", set_debug_rodata);
#endif#ifdef CONFIG_STRICT_KERNEL_RWX
static void mark_readonly(void)
{
    if (rodata_enabled) {
        /*
         * load_module() results in W+X mappings, which are cleaned up
         * with call_rcu_sched().  Let's make sure that queued work is
         * flushed so that we don't hit false positives looking for
         * insecure pages which are W+X.
         */
        rcu_barrier_sched();
        mark_rodata_ro();
        rodata_test();
    } else
        pr_info("Kernel memory protection disabled.\n");
}
#else
static inline void mark_readonly(void)
{
    pr_warn("This architecture does not have kernel memory protection.\n");
}
#endif
​
static int __ref kernel_init(void *unused)
{
    int ret;
#ifdef CONFIG_EARLY_SERVICES
    int status = 0;
#endif
​
​
    kernel_init_freeable();
    /* need to finish all async __init code before freeing the memory */
    async_synchronize_full();
    ftrace_free_init_mem();
    free_initmem();
    mark_readonly();
    system_state = SYSTEM_RUNNING;
    numa_default_policy();
​
    rcu_end_inkernel_boot();
    place_marker("M - DRIVER Kernel Boot Done");
​
#ifdef CONFIG_EARLY_SERVICES
    status = get_early_services_status();
    if (status) {
        struct kstat stat;
        /* Wait for early services SE policy load completion signal */
        while (vfs_stat("/dev/sedone", &stat) != 0);
    }
#endif
​
    if (ramdisk_execute_command) {
        ret = run_init_process(ramdisk_execute_command);
        if (!ret)
            return 0;
        pr_err("Failed to execute %s (error %d)\n",
               ramdisk_execute_command, ret);
    }
​
    /*
     * We try each of these until one succeeds.
     *
     * The Bourne shell can be used instead of init if we are
     * trying to recover a really broken machine.
     */
    if (execute_command) {
        ret = run_init_process(execute_command);
        if (!ret)
            return 0;
        panic("Requested init %s failed (error %d).",
              execute_command, ret);
    }
    if (!try_to_run_init_process("/sbin/init") ||
        !try_to_run_init_process("/etc/init") ||
        !try_to_run_init_process("/bin/init") ||
        !try_to_run_init_process("/bin/sh"))
        return 0;
​
    panic("No working init found.  Try passing init= option to kernel. "
          "See Linux Documentation/admin-guide/init.rst for guidance.");
}
​
static noinline void __init kernel_init_freeable(void)
{
    /*
     * Wait until kthreadd is all set-up.
     */
    wait_for_completion(&kthreadd_done);
​
    /* Now the scheduler is fully set up and can do blocking allocations */
    gfp_allowed_mask = __GFP_BITS_MASK;
​
    /*
     * init can allocate pages on any node
     */
    set_mems_allowed(node_states[N_MEMORY]);
​
    cad_pid = task_pid(current);
​
    smp_prepare_cpus(setup_max_cpus);
​
    workqueue_init();
​
    init_mm_internals();
​
    do_pre_smp_initcalls();
    lockup_detector_init();
​
    smp_init();
    sched_init_smp();
​
    page_alloc_init_late();
    /* Initialize page ext after all struct pages are initialized. */
    page_ext_init();
​
    do_basic_setup();
​
    /* Open the /dev/console on the rootfs, this should never fail */
    if (sys_open((const char __user *) "/dev/console", O_RDWR, 0) < 0)
        pr_err("Warning: unable to open an initial console.\n");
​
    (void) sys_dup(0);
    (void) sys_dup(0);
    /*
     * check if there is an early userspace init.  If yes, let it do all
     * the work
     */
​
    if (!ramdisk_execute_command)
        ramdisk_execute_command = "/init";
​
    if (sys_access((const char __user *) ramdisk_execute_command, 0) != 0) {
        ramdisk_execute_command = NULL;
        prepare_namespace();
    }
    launch_early_services();
​
    /*
     * Ok, we have completed the initial bootup, and
     * we're essentially up and running. Get rid of the
     * initmem segments and start the user-mode stuff..
     *
     * rootfs is available now, try loading the public keys
     * and default modules
     */integrity_load_keys();
    load_default_modules();
}

start_kernel():

在kernel进入c语言阶段后,会开始执行start_kernel函数,它负责进行kernel正式运行前各个功能的初始化:打印了一些信息、内核工作需要的模块的初始化被依次调用(譬如内存管理、调度系统、驱动的加载),最后末尾调用了一个rest_init函数启动了三个进程(idle、kernel_init、kthreadd),来开启操作系统的正式运行

asmlinkage __visible void __init start_kernel(void)
{
    char *command_line;
    char *after_dashes;
​
    set_task_stack_end_magic(&init_task);
    smp_setup_processor_id();
    debug_objects_early_init();
​
    cgroup_init_early();
​
    local_irq_disable();
    early_boot_irqs_disabled = true;
​
    /*
     * Interrupts are still disabled. Do necessary setups, then
     * enable them.
     */
    boot_cpu_init();
    page_address_init();
    pr_notice("%s", linux_banner);
    setup_arch(&command_line);
    /*
     * Set up the the initial canary and entropy after arch
     * and after adding latent and command line entropy.
     */
    add_latent_entropy();
    add_device_randomness(command_line, strlen(command_line));
    boot_init_stack_canary();
    mm_init_cpumask(&init_mm);
    setup_command_line(command_line);
    setup_nr_cpu_ids();
    setup_per_cpu_areas();
    smp_prepare_boot_cpu(); /* arch-specific boot-cpu hooks */
    boot_cpu_hotplug_init();
​
    build_all_zonelists(NULL);
    page_alloc_init();
​
    pr_notice("Kernel command line: %s\n", boot_command_line);
    parse_early_param();
    after_dashes = parse_args("Booting kernel",
                  static_command_line, __start___param,
                  __stop___param - __start___param,
                  -1, -1, NULL, &unknown_bootoption);
    if (!IS_ERR_OR_NULL(after_dashes))
        parse_args("Setting init args", after_dashes, NULL, 0, -1, -1,
               NULL, set_init_arg);
​
    jump_label_init();
​
    /*
     * These use large bootmem allocations and must precede
     * kmem_cache_init()
     */
    setup_log_buf(0);
    pidhash_init();
    vfs_caches_init_early();
    sort_main_extable();
    trap_init();
    mm_init();
​
    ftrace_init();
​
    /* trace_printk can be enabled here */
    early_trace_init();
​
    /*
     * Set up the scheduler prior starting any interrupts (such as the
     * timer interrupt). Full topology setup happens at smp_init()
     * time - but meanwhile we still have a functioning scheduler.
     */
    sched_init();
    /*
     * Disable preemption - early bootup scheduling is extremely
     * fragile until we cpu_idle() for the first time.
     */
    preempt_disable();
    if (WARN(!irqs_disabled(),
         "Interrupts were enabled *very* early, fixing it\n"))
        local_irq_disable();
    radix_tree_init();
​
    /*
     * Allow workqueue creation and work item queueing/cancelling
     * early.  Work item execution depends on kthreads and starts after
     * workqueue_init().
     */
    workqueue_init_early();
​
    rcu_init();
​
    /* Trace events are available after this */
    trace_init();
​
    context_tracking_init();
    /* init some links before init_ISA_irqs() */
    early_irq_init();
    init_IRQ();
    tick_init();
    rcu_init_nohz();
    init_timers();
    hrtimers_init();
    softirq_init();
    timekeeping_init();
    time_init();
    sched_clock_postinit();
    printk_safe_init();
    perf_event_init();
    profile_init();
    call_function_init();
    WARN(!irqs_disabled(), "Interrupts were enabled early\n");
    early_boot_irqs_disabled = false;
    local_irq_enable();
​
    kmem_cache_init_late();
​
    /*
     * HACK ALERT! This is early. We're enabling the console before
     * we've done PCI setups etc, and console_init() must be aware of
     * this. But we do want output early, in case something goes wrong.
     */
    console_init();
    if (panic_later)
        panic("Too many boot %s vars at `%s'", panic_later,
              panic_param);
​
    lockdep_info();
​
    /*
     * Need to run this when irqs are enabled, because it wants
     * to self-test [hard/soft]-irqs on/off lock inversion bugs
     * too:
     */
    locking_selftest();
​
    /*
     * This needs to be called before any devices perform DMA
     * operations that might use the SWIOTLB bounce buffers. It will
     * mark the bounce buffers as decrypted so that their usage will
     * not cause "plain-text" data to be decrypted when accessed.
     */
    mem_encrypt_init();
    #ifdef CONFIG_BLK_DEV_INITRD
    if (initrd_start && !initrd_below_start_ok &&
        page_to_pfn(virt_to_page((void *)initrd_start)) < min_low_pfn) {
        pr_crit("initrd overwritten (0x%08lx < 0x%08lx) - disabling it.\n",
            page_to_pfn(virt_to_page((void *)initrd_start)),
            min_low_pfn);
        initrd_start = 0;
    }
#endif
    kmemleak_init();
    debug_objects_mem_init();
    setup_per_cpu_pageset();
    numa_policy_init();
    if (late_time_init)
        late_time_init();
    calibrate_delay();
    pidmap_init();
    anon_vma_init();
    acpi_early_init();
#ifdef CONFIG_X86
    if (efi_enabled(EFI_RUNTIME_SERVICES))
        efi_enter_virtual_mode();
#endif
    thread_stack_cache_init();
    cred_init();
    fork_init();
    proc_caches_init();
    buffer_init();
    key_init();
    security_init();
    dbg_late_init();
    vfs_caches_init();
    pagecache_init();
    signals_init();
    proc_root_init();
    nsfs_init();
    cpuset_init();
    cgroup_init();
    taskstats_init_early();
    delayacct_init();
​
    check_bugs();
​
    acpi_subsystem_init();
    arch_post_acpi_subsys_init();
    sfi_init_late();
​
    if (efi_enabled(EFI_RUNTIME_SERVICES)) {
        efi_free_boot_services();
    }
​
    /* Do the rest non-__init'ed, we're now alive */
    rest_init();    //最后调用rest_init()启动三个进程(idle,kernel_init,kthreadd)来开启操作系统

idle是操作系统的空闲进程,当cpu空闲的时候会去运行它,资源利用管理,执行低优化优先级任务

ktheadd是内核线程管理,初始化线程

rest_init():

static noinline void __ref rest_init(void)
{
    struct task_struct *tsk;
    int pid;
​
    rcu_scheduler_starting();
    /*
     * We need to spawn init first so that it obtains pid 1, however
     * the init task will end up wanting to create kthreads, which, if
     * we schedule it before we create kthreadd, will OOPS.
     */
    pid = kernel_thread(kernel_init, NULL, CLONE_FS);
    /*
     * Pin init on the boot CPU. Task migration is not properly working
     * until sched_init_smp() has been run. It will set the allowed
     * CPUs for init to the non isolated CPUs.
     */
    rcu_read_lock();
    tsk = find_task_by_pid_ns(pid, &init_pid_ns);
    set_cpus_allowed_ptr(tsk, cpumask_of(smp_processor_id()));
    rcu_read_unlock();
​
    numa_default_policy();
    pid = kernel_thread(kthreadd, NULL, CLONE_FS | CLONE_FILES);
    rcu_read_lock();
    kthreadd_task = find_task_by_pid_ns(pid, &init_pid_ns);
    rcu_read_unlock();
​
    /*
     * Enable might_sleep() and smp_processor_id() checks.
     * They cannot be enabled earlier because with CONFIG_PRREMPT=y
     * kernel_thread() would trigger might_sleep() splats. With
     * CONFIG_PREEMPT_VOLUNTARY=y the init task might have scheduled
     * already, but it's stuck on the kthreadd_done completion.
     */
    system_state = SYSTEM_SCHEDULING;
​
    complete(&kthreadd_done);
​
    /*
     * The boot idle thread must execute schedule()
     * at least once to get things moving:
     */
    schedule_preempt_disabled();
    /* Call into cpu_idle with preempt disabled */
    cpu_startup_entry(CPUHP_ONLINE);
}

kernel_init():

kernel_init最开始只是一个函数,这个函数作为进程被启动,但是之后它将读取根文件系统下的init程序,这个操作将完成从内核态到用户态的转变,而这个init进程是所有用户态进程的父进程,它生了大量的子进程,所以init进程将永远存在,其PID是1。

image-20231114110728111

static int __ref kernel_init(void *unused)
{
    int ret;
#ifdef CONFIG_EARLY_SERVICES
    int status = 0;
#endif
​
​
    kernel_init_freeable();
    /* need to finish all async __init code before freeing the memory */
    async_synchronize_full();
    ftrace_free_init_mem();
    free_initmem();
    mark_readonly();
    system_state = SYSTEM_RUNNING;
    numa_default_policy();
​
    rcu_end_inkernel_boot();
    place_marker("M - DRIVER Kernel Boot Done");
​
#ifdef CONFIG_EARLY_SERVICES
    status = get_early_services_status();
    if (status) {
        struct kstat stat;
        /* Wait for early services SE policy load completion signal */
        while (vfs_stat("/dev/sedone", &stat) != 0);
    }
#endif
​
    if (ramdisk_execute_command) {
        ret = run_init_process(ramdisk_execute_command);
        if (!ret)
            return 0;
        pr_err("Failed to execute %s (error %d)\n",
               ramdisk_execute_command, ret);
    }
​
    /*
     * We try each of these until one succeeds.
     *
     * The Bourne shell can be used instead of init if we are
     * trying to recover a really broken machine.
     */
    if (execute_command) {
        ret = run_init_process(execute_command);
        if (!ret)
            return 0;
        panic("Requested init %s failed (error %d).",
              execute_command, ret);
    }
    if (!try_to_run_init_process("/sbin/init") ||
        !try_to_run_init_process("/etc/init") ||
        !try_to_run_init_process("/bin/init") ||
        !try_to_run_init_process("/bin/sh"))
        return 0;
​
    panic("No working init found.  Try passing init= option to kernel. "
          "See Linux Documentation/admin-guide/init.rst for guidance.");
}

do_basic_setup():

初始化设备,驱动等

static void __init do_basic_setup(void)
{
    cpuset_init_smp();
    shmem_init();
    driver_init();
    init_irq_proc();
    do_ctors();
    usermodehelper_enable();
    do_initcalls();
}

numa_default_policy():

开启MMU,建立页表

void numa_default_policy(void)
{
    do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
}
​
/* Set the process memory policy  设置进程内存策略*/
static long do_set_mempolicy(unsigned short mode, unsigned short flags,
                 nodemask_t *nodes)
{
    struct mempolicy *new, *old;
    NODEMASK_SCRATCH(scratch);
    int ret;
​
    if (!scratch)
        return -ENOMEM;new = mpol_new(mode, flags, nodes);
    if (IS_ERR(new)) {
        ret = PTR_ERR(new);
        goto out;
    }
​
    task_lock(current);
    ret = mpol_set_nodemask(new, nodes, scratch);
    if (ret) {
        task_unlock(current);
        mpol_put(new);
        goto out;
    }
    old = current->mempolicy;
    current->mempolicy = new;
    if (new && new->mode == MPOL_INTERLEAVE)
        current->il_prev = MAX_NUMNODES-1;
    task_unlock(current);
    mpol_put(old);
    ret = 0;
out:
    NODEMASK_SCRATCH_FREE(scratch);
    return ret;
}

run_init_process():

启动init进程

static int run_init_process(const char *init_filename)
{
    argv_init[0] = init_filename;
    return do_execve(getname_kernel(init_filename),
        (const char __user *const __user *)argv_init,
        (const char __user *const __user *)envp_init);
}

try_to_run_init_process():

static int try_to_run_init_process(const char *init_filename)
{
    int ret;
​
    ret = run_init_process(init_filename);
​
    if (ret && ret != -ENOENT) {
        pr_err("Starting init: %s exists but couldn't execute it (error %d)\n",
               init_filename, ret);
    }
​
    return ret;
}