spring项目动态修改线程池配置

32 阅读15分钟

一、前言

        我们为什么需要动态修改线程池的参数?因为线程池参数的设置虽然有参考的方向,但是具体的值是根据业务的发展会动态变化的,我们需要一个能够动态设置线程池的方案。

二、实现思路

2.1 springboot启动的时候把你关注的线程池的属性存起来

目的:因为如果修改线程池参数的文件被删除了,我们要复原线程池原本的参数,当然如果我们认为不需要复原,这一步就是不必要的。

2.2 监听配置中心要修改的线程池的属性变化

大多数的商业项目都会有配置中心来进行动态修改项目的某些值。这里的配置中心开源的有Apollo这样的框架。里面提供了如何获取配置中心key value的方法和监听值变化的方法。

2.3 用VariableLinkedBlockingQueue来替代LinkedBlockingQueue

用了VariableLinkedBlockingQueue可变队列来处理我们常用LinkedBlockingQueue来设置线程池队列,但是这个队列不可变,不能再设置的问题。我们用VariableLinkedBlockingQueue来替代LinkedBlockingQueue,如果你的LinkedBlockingQueue那就没办法改变队列长度了。

2.4 主流程伪代码实现

2.4.1 定义线程池动作枚举类 规范方法执行

import lombok.AllArgsConstructor;
import lombok.Getter;
import lombok.extern.slf4j.Slf4j;
import org.apache.commons.lang3.math.NumberUtils;

import java.util.Arrays;
import java.util.Objects;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;

/**
 * 支持修改线程池的参数
 */
@AllArgsConstructor
@Getter
@Slf4j
public enum ThreadSupportChangePropertyEnum {
    CORE_POOL_THREAD("corePoolSize"){
        @Override
        public long getValue(ThreadPoolExecutor threadPoolExecutor) {
            return threadPoolExecutor.getCorePoolSize();
        }

        @Override
        public void apply(String latest, ThreadPoolExecutor threadPoolExecutor) {
            threadPoolExecutor.setCorePoolSize(NumberUtils.toInt(latest, threadPoolExecutor.getCorePoolSize()));
        }

        @Override
        public void apply(Long value, ThreadPoolExecutor threadPoolExecutor) {
            threadPoolExecutor.setCorePoolSize(value.intValue());
        }


    },

    MAXIMUM_POOL_THREAD("maximumPoolSize"){
        @Override
        public long getValue(ThreadPoolExecutor threadPoolExecutor) {
            return threadPoolExecutor.getMaximumPoolSize();
        }
        @Override
        public void apply(String latest, ThreadPoolExecutor threadPoolExecutor) {
            threadPoolExecutor.setMaximumPoolSize(NumberUtils.toInt(latest, threadPoolExecutor.getMaximumPoolSize()));
        }

        @Override
        public void apply(Long value, ThreadPoolExecutor threadPoolExecutor) {
            threadPoolExecutor.setMaximumPoolSize(value.intValue());
        }
    },

    KEEP_ALIVE_TIME("keepAliveTime"){
        @Override
        public long getValue(ThreadPoolExecutor threadPoolExecutor) {
            return threadPoolExecutor.getKeepAliveTime(TimeUnit.MILLISECONDS);
        }

        @Override
        public void apply(String latest, ThreadPoolExecutor threadPoolExecutor) {
            threadPoolExecutor.setKeepAliveTime(NumberUtils.toLong(latest, threadPoolExecutor.getKeepAliveTime(TimeUnit.MILLISECONDS)), TimeUnit.MILLISECONDS);
        }

        @Override
        public void apply(Long value, ThreadPoolExecutor threadPoolExecutor) {
            threadPoolExecutor.setKeepAliveTime(value, TimeUnit.MILLISECONDS);
        }
    },

    /**
     * 仅支持 VariableLinkedBlockingQueue 类型线程池队列支持修改队列长度
     */
    CAPACITY("capacity") {
        @Override
        public long getValue(ThreadPoolExecutor threadPoolExecutor) {
            return threadPoolExecutor.getQueue().size();
        }

        @Override
        public void apply(String value, ThreadPoolExecutor threadPoolExecutor) {
            if (!threadPoolExecutor.getQueue().getClass().isAssignableFrom(VariableLinkedBlockingQueue.class)) {
                log.warn("不支持修改的线程池队列类型,仅支持 VariableLinkedBlockingQueue.class 类型的线程阻塞队列修改线程池队列大小");
                return;
            }
            ((VariableLinkedBlockingQueue)threadPoolExecutor.getQueue()).setCapacity(NumberUtils.toInt(value, threadPoolExecutor.getQueue().size()));
        }

        @Override
        public void apply(Long value, ThreadPoolExecutor threadPoolExecutor) {
            if (!threadPoolExecutor.getQueue().getClass().isAssignableFrom(VariableLinkedBlockingQueue.class)) {
                log.warn("不支持修改的线程池队列类型,仅支持 VariableLinkedBlockingQueue.class 类型的线程阻塞队列修改线程池队列大小");
                return;
            }
            ((VariableLinkedBlockingQueue)threadPoolExecutor.getQueue()).setCapacity(value.intValue());
        }
    }



    ;

    private String name;

    private static ThreadSupportChangePropertyEnum[] ENUMS = ThreadSupportChangePropertyEnum.values();

    public static ThreadSupportChangePropertyEnum of(String key) {
        return Arrays.stream(ENUMS).filter(property -> Objects.equals(property.getName(), key)).findFirst()
                .orElseThrow(() -> new IllegalArgumentException("不支持修改的属性: " + key));
    }

    public abstract long getValue(ThreadPoolExecutor threadPoolExecutor);
    
    /**
     * 处理配置中心String类型的监听值
     * @param value
     * @param threadPoolExecutor
     */
    public abstract void apply(String value, ThreadPoolExecutor threadPoolExecutor);
    
    
    /**
     * 处理配置中心Long类型的监听值
     * @param value
     * @param threadPoolExecutor
     */
    public abstract void apply(Long value, ThreadPoolExecutor threadPoolExecutor);

}

2.4.2 主流程代码

import lombok.extern.slf4j.Slf4j;
import org.apache.commons.collections4.MapUtils;
import org.apache.commons.lang3.StringUtils;
import org.springframework.beans.BeansException;
import org.springframework.context.ApplicationContext;
import org.springframework.context.ApplicationContextAware;
import org.springframework.stereotype.Component;

import java.util.Arrays;
import java.util.HashMap;
import java.util.Map;
import java.util.Objects;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.ThreadPoolExecutor;


@Component
@Slf4j
public class DynamicThreadPoolChangeListener  implements ApplicationContextAware {

    // key:包了Trace的线程池名字 value:对应的线程池
    private  Map<String, ExecutorService> traceThreadPoolExecutorMap;
    
    // key:线程池名字+属性 value:初始值
    private Map<String, Long> originThreadPoolKeyValueMap = new HashMap<>();

    // 只监听配置中心 "threadpool.properties"这个文件的配置
    private static final String LISTEN_FILE = "threadpool.properties";

    private ConfigService configService;
    
    /**
     *  PS:这里要换成你们使用的配置中心提供的监听key变化的api
     *
     * key:配置中心配置的key
     * latest:修改后的值
     * old:修改前的值
     */
    KeyListener keyListener = (key, latest, old) -> {
        String beanName = getThreadPoolBeanName(key);
        String propertyName = getChangedPropertyName(key);
        log.info("config change key:{}, old:{} -> latest:{}, beanName:{}, propertyName:{}", key, old, latest, beanName, propertyName);
        if (StringUtils.isBlank(latest)) {
            latest = String.valueOf(originThreadPoolKeyValueMap.get(key));
        }
        // 我们的业务线程池做了一些自定义,所以是用自定义的TraceThreadPoolExecutor.class实现的,大家可以换成ThreadPoolExecutor.class
        ExecutorService executorService = traceThreadPoolExecutorMap.get(beanName);
        if (Objects.isNull(executorService) || !executorService.getClass().isAssignableFrom(TraceThreadPoolExecutor.class)) {
            log.warn("仅支持动态修改 TraceThreadPoolExecutor 类型的线程池参数, key:{}", key);
            return;
        }
        ThreadPoolExecutor executor = (ThreadPoolExecutor)executorService;
        ThreadSupportChangePropertyEnum.of(propertyName).apply(latest, executor);
    };

    @Override
    public void setApplicationContext(ApplicationContext applicationContext) throws BeansException {
        try {
            log.info("config service watch {} init", LISTEN_FILE);

            traceThreadPoolExecutorMap = applicationContext.getBeansOfType(ExecutorService.class);
            if (MapUtils.isEmpty(traceThreadPoolExecutorMap)) {
                return;
            }
            traceThreadPoolExecutorMap.forEach((beanName, executorService) -> {
                if (!executorService.getClass().isAssignableFrom(TraceThreadPoolExecutor.class)) {
                    return;
                }
                Arrays.stream(ThreadSupportChangePropertyEnum.values())
                        .forEach(propertyNameEnum -> {
                    String property = propertyNameEnum.getName();
                    Long originValue = null;
                    Long configCenterValue = null;
                    try {
                        ThreadPoolExecutor threadPoolExecutor = (ThreadPoolExecutor)executorService;
                        String key = beanName + "." + property;
                        originValue = propertyNameEnum.getValue(threadPoolExecutor);
                        originThreadPoolKeyValueMap.put(key, originValue);
                        configCenterValue = com.ctrip.framework.apollo.ConfigService.getConfig(LISTEN_FILE).getLongProperty(key, originValue);
                        if (Objects.nonNull(configCenterValue)) {
                            TraceThreadPoolExecutor executor = (TraceThreadPoolExecutor) executorService;
                            propertyNameEnum.apply(configCenterValue, executor);
                        }
                    } catch (Exception e) {
                        log.error("init TraceThreadPoolExecutor origin values exception, beanName:{}, property:{}, value:{} configValue:{}", beanName, property, originValue, configCenterValue, e);
                    }
                });
            });
            log.info("origin keyValue:{}", originThreadPoolKeyValueMap);
            log.info("trace thread pool:{}",traceThreadPoolExecutorMap);
            configService = applicationContext.getBean(ConfigService.class);

            // 监听某个文件的全部key
            configService.watch(LISTEN_FILE)
                    .keyListener(ForWatch.KEYS_ALL, keyListener)
                    .start();
            log.info("config service watch {}.", LISTEN_FILE);
        } catch (Exception ignore) {
        }
    }
    
    /**
     * 配置中心threadpool.properties里的配置
     * 按照xxx.xxx的方式配置 第一个xxx使用线程池的beanName 第二个xxx是线程池的属性
     *
     * @param key
     * @return 第二个xxx是线程池的属性
     */
    private String getChangedPropertyName(String key) {
        if (StringUtils.isBlank(key)) {
            return StringUtils.EMPTY;
        }
        int index = key.indexOf(".") + 1;
        if(index <= 0) {
            return StringUtils.EMPTY;
        }
        return key.substring(index);
    }
    
    /**
     * 配置中心threadpool.properties里的配置
     * 按照xxx.xxx的方式配置 第一个xxx使用线程池的beanName 第二个xxx是线程池的属性
     *
     * @param key
     * @return 这里获取的第一个xxx 线程池的beanName
     */
    private String getThreadPoolBeanName(String key) {
        if (StringUtils.isBlank(key)) {
            return StringUtils.EMPTY;
        }
        int index = key.indexOf(".");
        if(index <= 0) {
            return StringUtils.EMPTY;
        }
        return key.substring(0, index);
    }


}

实现VariableLinkedBlockingQueue代码

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
// Copyright (c) 2007-2020 VMware, Inc. or its affiliates.  All rights reserved.
//
// This software, the RabbitMQ Java client library, is triple-licensed under the
// Mozilla Public License 2.0 ("MPL"), the GNU General Public License version 2
// ("GPL") and the Apache License version 2 ("ASL"). For the MPL, please see
// LICENSE-MPL-RabbitMQ. For the GPL, please see LICENSE-GPL2.  For the ASL,
// please see LICENSE-APACHE2.
//
// This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND,
// either express or implied. See the LICENSE file for specific language governing
// rights and limitations of this software.
//
// If you have any questions regarding licensing, please contact us at
// info@rabbitmq.com.

/*
 * Modifications Copyright 2015-2020 VMware, Inc. or its affiliates. and licenced as per
 * the rest of the RabbitMQ Java client.
 */

/*
 * Written by Doug Lea with assistance from members of JCP JSR-166
 * Expert Group and released to the public domain, as explained at
 * https://creativecommons.org/licenses/publicdomain
 */

package com.allawn.framework.common;

import java.util.*;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.ReentrantLock;
import java.util.function.Consumer;

/**
 * A clone of {@linkplain java.util.concurrent.LinkedBlockingQueue}
 * with the addition of a {@link #setCapacity(int)} method, allowing us to
 * change the capacity of the queue while it is in use.<p>
 *
 * The documentation for LinkedBlockingQueue follows...<p>
 *
 * An optionally-bounded {@linkplain BlockingQueue blocking queue} based on
 * linked nodes.
 * This queue orders elements FIFO (first-in-first-out).
 * The <em>head</em> of the queue is that element that has been on the
 * queue the longest time.
 * The <em>tail</em> of the queue is that element that has been on the
 * queue the shortest time. New elements
 * are inserted at the tail of the queue, and the queue retrieval
 * operations obtain elements at the head of the queue.
 * Linked queues typically have higher throughput than array-based queues but
 * less predictable performance in most concurrent applications.
 *
 * <p> The optional capacity bound constructor argument serves as a
 * way to prevent excessive queue expansion. The capacity, if unspecified,
 * is equal to {@link Integer#MAX_VALUE}.  Linked nodes are
 * dynamically created upon each insertion unless this would bring the
 * queue above capacity.
 *
 * <p>This class implements all of the <em>optional</em> methods
 * of the {@link Collection} and {@link Iterator} interfaces.
 *
 * <p>This class is a member of the
 * <a href="{@docRoot}/../guide/collections/index.html">
 * Java Collections Framework</a>.
 *
 * @since 1.5
 * @author Doug Lea
 * @param <E> the type of elements held in this collection
 *
 **/
public class VariableLinkedBlockingQueue<E> extends AbstractQueue<E>
        implements BlockingQueue<E>, java.io.Serializable {
    private static final long serialVersionUID = -6903933977591709194L;

    /*
     * A variant of the "two lock queue" algorithm.  The putLock gates
     * entry to put (and offer), and has an associated condition for
     * waiting puts.  Similarly for the takeLock.  The "count" field
     * that they both rely on is maintained as an atomic to avoid
     * needing to get both locks in most cases. Also, to minimize need
     * for puts to get takeLock and vice-versa, cascading notifies are
     * used. When a put notices that it has enabled at least one take,
     * it signals taker. That taker in turn signals others if more
     * items have been entered since the signal. And symmetrically for
     * takes signalling puts. Operations such as remove(Object) and
     * iterators acquire both locks.
     *
     * Visibility between writers and readers is provided as follows:
     *
     * Whenever an element is enqueued, the putLock is acquired and
     * count updated.  A subsequent reader guarantees visibility to the
     * enqueued Node by either acquiring the putLock (via fullyLock)
     * or by acquiring the takeLock, and then reading n = count.get();
     * this gives visibility to the first n items.
     *
     * To implement weakly consistent iterators, it appears we need to
     * keep all Nodes GC-reachable from a predecessor dequeued Node.
     * That would cause two problems:
     * - allow a rogue Iterator to cause unbounded memory retention
     * - cause cross-generational linking of old Nodes to new Nodes if
     *   a Node was tenured while live, which generational GCs have a
     *   hard time dealing with, causing repeated major collections.
     * However, only non-deleted Nodes need to be reachable from
     * dequeued Nodes, and reachability does not necessarily have to
     * be of the kind understood by the GC.  We use the trick of
     * linking a Node that has just been dequeued to itself.  Such a
     * self-link implicitly means to advance to head.next.
     */

    /**
     * Linked list node class
     */
    static class Node<E> {
        E item;

        /**
         * One of:
         * - the real successor Node
         * - this Node, meaning the successor is head.next
         * - null, meaning there is no successor (this is the last node)
         */
        Node<E> next;

        Node(E x) {
            item = x;
        }
    }

    /** The capacity bound, or Integer.MAX_VALUE if none */
    private int capacity;

    /** Current number of elements */
    private final AtomicInteger count = new AtomicInteger();

    /**
     * Head of linked list.
     * Invariant: head.item == null
     */
    transient Node<E> head;

    /**
     * Tail of linked list.
     * Invariant: last.next == null
     */
    private transient Node<E> last;

    /** Lock held by take, poll, etc */
    private final ReentrantLock takeLock = new ReentrantLock();

    /** Wait queue for waiting takes */
    private final Condition notEmpty = takeLock.newCondition();

    /** Lock held by put, offer, etc */
    private final ReentrantLock putLock = new ReentrantLock();

    /** Wait queue for waiting puts */
    private final Condition notFull = putLock.newCondition();

    /**
     * Signals a waiting take. Called only from put/offer (which do not
     * otherwise ordinarily lock takeLock.)
     */
    private void signalNotEmpty() {
        final ReentrantLock takeLock = this.takeLock;
        takeLock.lock();
        try {
            notEmpty.signal();
        } finally {
            takeLock.unlock();
        }
    }

    /**
     * Signals a waiting put. Called only from take/poll.
     */
    private void signalNotFull() {
        final ReentrantLock putLock = this.putLock;
        putLock.lock();
        try {
            notFull.signal();
        } finally {
            putLock.unlock();
        }
    }

    /**
     * Links node at end of queue.
     *
     * @param node the node
     */
    private void enqueue(Node<E> node) {
        // assert putLock.isHeldByCurrentThread();
        // assert last.next == null;
        last = last.next = node;
    }

    /**
     * Removes a node from head of queue.
     *
     * @return the node
     */
    private E dequeue() {
        // assert takeLock.isHeldByCurrentThread();
        // assert head.item == null;
        Node<E> h = head;
        Node<E> first = h.next;
        h.next = h; // help GC
        head = first;
        E x = first.item;
        first.item = null;
        return x;
    }

    /**
     * Locks to prevent both puts and takes.
     */
    void fullyLock() {
        putLock.lock();
        takeLock.lock();
    }

    /**
     * Unlocks to allow both puts and takes.
     */
    void fullyUnlock() {
        takeLock.unlock();
        putLock.unlock();
    }

//     /**
//      * Tells whether both locks are held by current thread.
//      */
//     boolean isFullyLocked() {
//         return (putLock.isHeldByCurrentThread() &&
//                 takeLock.isHeldByCurrentThread());
//     }

    /**
     * Creates a {@code VariableLinkedBlockingQueue} with a capacity of
     * {@link Integer#MAX_VALUE}.
     */
    public VariableLinkedBlockingQueue() {
        this(Integer.MAX_VALUE);
    }

    /**
     * Creates a {@code VariableLinkedBlockingQueue} with the given (fixed) capacity.
     *
     * @param capacity the capacity of this queue
     * @throws IllegalArgumentException if {@code capacity} is not greater
     *         than zero
     */
    public VariableLinkedBlockingQueue(int capacity) {
        if (capacity <= 0) {
            throw new IllegalArgumentException();
        }
        this.capacity = capacity;
        last = head = new Node<E>(null);
    }

    /**
     * Creates a {@code VariableLinkedBlockingQueue} with a capacity of
     * {@link Integer#MAX_VALUE}, initially containing the elements of the
     * given collection,
     * added in traversal order of the collection's iterator.
     *
     * @param c the collection of elements to initially contain
     * @throws NullPointerException if the specified collection or any
     *         of its elements are null
     */
    public VariableLinkedBlockingQueue(Collection<? extends E> c) {
        this(Integer.MAX_VALUE);
        final ReentrantLock putLock = this.putLock;
        putLock.lock(); // Never contended, but necessary for visibility
        try {
            int n = 0;
            for (E e : c) {
                if (e == null) {
                    throw new NullPointerException();
                }
                if (n == capacity) {
                    throw new IllegalStateException("Queue full");
                }
                enqueue(new Node<E>(e));
                ++n;
            }
            count.set(n);
        } finally {
            putLock.unlock();
        }
    }

    // this doc comment is overridden to remove the reference to collections
    // greater in size than Integer.MAX_VALUE
    /**
     * Returns the number of elements in this queue.
     *
     * @return the number of elements in this queue
     */
    @Override
    public int size() {
        return count.get();
    }

    /**
     * Set a new capacity for the queue. Increasing the capacity can
     * cause any waiting {@link #put(Object)} invocations to succeed if the new
     * capacity is larger than the queue.
     * @param capacity the new capacity for the queue
     */
    public void setCapacity(int capacity) {
        final int oldCapacity = this.capacity;
        this.capacity = capacity;
        final int size = count.get();
        if (capacity > size && size >= oldCapacity) {
            signalNotFull();
        }
    }

    // this doc comment is a modified copy of the inherited doc comment,
    // without the reference to unlimited queues.
    /**
     * Returns the number of additional elements that this queue can ideally
     * (in the absence of memory or resource constraints) accept without
     * blocking. This is always equal to the initial capacity of this queue
     * less the current {@code size} of this queue.
     *
     * <p>Note that you <em>cannot</em> always tell if an attempt to insert
     * an element will succeed by inspecting {@code remainingCapacity}
     * because it may be the case that another thread is about to
     * insert or remove an element.
     */
    @Override
    public int remainingCapacity() {
        return capacity - count.get();
    }

    /**
     * Inserts the specified element at the tail of this queue, waiting if
     * necessary for space to become available.
     *
     * @throws InterruptedException {@inheritDoc}
     * @throws NullPointerException {@inheritDoc}
     */
    @Override
    public void put(E e) throws InterruptedException {
        if (e == null) {
            throw new NullPointerException();
        }
        // Note: convention in all put/take/etc is to preset local var
        // holding count negative to indicate failure unless set.
        int c = -1;
        Node<E> node = new Node<E>(e);
        final ReentrantLock putLock = this.putLock;
        final AtomicInteger count = this.count;
        putLock.lockInterruptibly();
        try {
            /*
             * Note that count is used in wait guard even though it is
             * not protected by lock. This works because count can
             * only decrease at this point (all other puts are shut
             * out by lock), and we (or some other waiting put) are
             * signalled if it ever changes from capacity. Similarly
             * for all other uses of count in other wait guards.
             */
            while (count.get() >= capacity) {
                notFull.await();
            }
            enqueue(node);
            c = count.getAndIncrement();
            if (c + 1 < capacity) {
                notFull.signal();
            }
        } finally {
            putLock.unlock();
        }
        if (c == 0) {
            signalNotEmpty();
        }
    }

    /**
     * Inserts the specified element at the tail of this queue, waiting if
     * necessary up to the specified wait time for space to become available.
     *
     * @return {@code true} if successful, or {@code false} if
     *         the specified waiting time elapses before space is available
     * @throws InterruptedException {@inheritDoc}
     * @throws NullPointerException {@inheritDoc}
     */
    @Override
    public boolean offer(E e, long timeout, TimeUnit unit)
            throws InterruptedException {

        if (e == null) {
            throw new NullPointerException();
        }
        long nanos = unit.toNanos(timeout);
        int c = -1;
        final ReentrantLock putLock = this.putLock;
        final AtomicInteger count = this.count;
        putLock.lockInterruptibly();
        try {
            while (count.get() >= capacity) {
                if (nanos <= 0) {
                    return false;
                }
                nanos = notFull.awaitNanos(nanos);
            }
            enqueue(new Node<E>(e));
            c = count.getAndIncrement();
            if (c + 1 < capacity) {
                notFull.signal();
            }
        } finally {
            putLock.unlock();
        }
        if (c == 0) {
            signalNotEmpty();
        }
        return true;
    }

    /**
     * Inserts the specified element at the tail of this queue if it is
     * possible to do so immediately without exceeding the queue's capacity,
     * returning {@code true} upon success and {@code false} if this queue
     * is full.
     * When using a capacity-restricted queue, this method is generally
     * preferable to method {@link BlockingQueue#add add}, which can fail to
     * insert an element only by throwing an exception.
     *
     * @throws NullPointerException if the specified element is null
     */
    @Override
    public boolean offer(E e) {
        if (e == null) {
            throw new NullPointerException();
        }
        final AtomicInteger count = this.count;
        if (count.get() >= capacity) {
            return false;
        }
        int c = -1;
        Node<E> node = new Node<E>(e);
        final ReentrantLock putLock = this.putLock;
        putLock.lock();
        try {
            if (count.get() < capacity) {
                enqueue(node);
                c = count.getAndIncrement();
                if (c + 1 < capacity) {
                    notFull.signal();
                }
            }
        } finally {
            putLock.unlock();
        }
        if (c == 0) {
            signalNotEmpty();
        }
        return c >= 0;
    }

    @Override
    public E take() throws InterruptedException {
        E x;
        int c = -1;
        final AtomicInteger count = this.count;
        final ReentrantLock takeLock = this.takeLock;
        takeLock.lockInterruptibly();
        try {
            while (count.get() == 0) {
                notEmpty.await();
            }
            x = dequeue();
            c = count.getAndDecrement();
            if (c > 1) {
                notEmpty.signal();
            }
        } finally {
            takeLock.unlock();
        }
        if (c >= capacity) {
            signalNotFull();
        }
        return x;
    }

    @Override
    public E poll(long timeout, TimeUnit unit) throws InterruptedException {
        E x = null;
        int c = -1;
        long nanos = unit.toNanos(timeout);
        final AtomicInteger count = this.count;
        final ReentrantLock takeLock = this.takeLock;
        takeLock.lockInterruptibly();
        try {
            while (count.get() == 0) {
                if (nanos <= 0) {
                    return null;
                }
                nanos = notEmpty.awaitNanos(nanos);
            }
            x = dequeue();
            c = count.getAndDecrement();
            if (c > 1) {
                notEmpty.signal();
            }
        } finally {
            takeLock.unlock();
        }
        if (c >= capacity) {
            signalNotFull();
        }
        return x;
    }

    @Override
    public E poll() {
        final AtomicInteger count = this.count;
        if (count.get() == 0) {
            return null;
        }
        E x = null;
        int c = -1;
        final ReentrantLock takeLock = this.takeLock;
        takeLock.lock();
        try {
            if (count.get() > 0) {
                x = dequeue();
                c = count.getAndDecrement();
                if (c > 1) {
                    notEmpty.signal();
                }
            }
        } finally {
            takeLock.unlock();
        }
        if (c >= capacity) {
            signalNotFull();
        }
        return x;
    }

    @Override
    public E peek() {
        if (count.get() == 0) {
            return null;
        }
        final ReentrantLock takeLock = this.takeLock;
        takeLock.lock();
        try {
            Node<E> first = head.next;
            if (first == null) {
                return null;
            } else {
                return first.item;
            }
        } finally {
            takeLock.unlock();
        }
    }

    /**
     * Unlinks interior Node p with predecessor trail.
     */
    void unlink(Node<E> p, Node<E> trail) {
        // assert isFullyLocked();
        // p.next is not changed, to allow iterators that are
        // traversing p to maintain their weak-consistency guarantee.
        p.item = null;
        trail.next = p.next;
        if (last == p) {
            last = trail;
        }
        if (count.getAndDecrement() >= capacity) {
            notFull.signal();
        }
    }

    /**
     * Removes a single instance of the specified element from this queue,
     * if it is present.  More formally, removes an element {@code e} such
     * that {@code o.equals(e)}, if this queue contains one or more such
     * elements.
     * Returns {@code true} if this queue contained the specified element
     * (or equivalently, if this queue changed as a result of the call).
     *
     * @param o element to be removed from this queue, if present
     * @return {@code true} if this queue changed as a result of the call
     */
    @Override
    public boolean remove(Object o) {
        if (o == null) {
            return false;
        }
        fullyLock();
        try {
            for (Node<E> trail = head, p = trail.next;
                 p != null;
                 trail = p, p = p.next) {
                if (o.equals(p.item)) {
                    unlink(p, trail);
                    return true;
                }
            }
            return false;
        } finally {
            fullyUnlock();
        }
    }

    /**
     * Returns {@code true} if this queue contains the specified element.
     * More formally, returns {@code true} if and only if this queue contains
     * at least one element {@code e} such that {@code o.equals(e)}.
     *
     * @param o object to be checked for containment in this queue
     * @return {@code true} if this queue contains the specified element
     */
    @Override
    public boolean contains(Object o) {
        if (o == null) {
            return false;
        }
        fullyLock();
        try {
            for (Node<E> p = head.next; p != null; p = p.next) {
                if (o.equals(p.item)) {
                    return true;
                }
            }
            return false;
        } finally {
            fullyUnlock();
        }
    }

    /**
     * Returns an array containing all of the elements in this queue, in
     * proper sequence.
     *
     * <p>The returned array will be "safe" in that no references to it are
     * maintained by this queue.  (In other words, this method must allocate
     * a new array).  The caller is thus free to modify the returned array.
     *
     * <p>This method acts as bridge between array-based and collection-based
     * APIs.
     *
     * @return an array containing all of the elements in this queue
     */
    @Override
    public Object[] toArray() {
        fullyLock();
        try {
            int size = count.get();
            Object[] a = new Object[size];
            int k = 0;
            for (Node<E> p = head.next; p != null; p = p.next) {
                a[k++] = p.item;
            }
            return a;
        } finally {
            fullyUnlock();
        }
    }

    /**
     * Returns an array containing all of the elements in this queue, in
     * proper sequence; the runtime type of the returned array is that of
     * the specified array.  If the queue fits in the specified array, it
     * is returned therein.  Otherwise, a new array is allocated with the
     * runtime type of the specified array and the size of this queue.
     *
     * <p>If this queue fits in the specified array with room to spare
     * (i.e., the array has more elements than this queue), the element in
     * the array immediately following the end of the queue is set to
     * {@code null}.
     *
     * <p>Like the {@link #toArray()} method, this method acts as bridge between
     * array-based and collection-based APIs.  Further, this method allows
     * precise control over the runtime type of the output array, and may,
     * under certain circumstances, be used to save allocation costs.
     *
     * <p>Suppose {@code x} is a queue known to contain only strings.
     * The following code can be used to dump the queue into a newly
     * allocated array of {@code String}:
     *
     *  <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
     *
     * Note that {@code toArray(new Object[0])} is identical in function to
     * {@code toArray()}.
     *
     * @param a the array into which the elements of the queue are to
     *          be stored, if it is big enough; otherwise, a new array of the
     *          same runtime type is allocated for this purpose
     * @return an array containing all of the elements in this queue
     * @throws ArrayStoreException if the runtime type of the specified array
     *         is not a supertype of the runtime type of every element in
     *         this queue
     * @throws NullPointerException if the specified array is null
     */
    @Override
    @SuppressWarnings("unchecked")
    public <T> T[] toArray(T[] a) {
        fullyLock();
        try {
            int size = count.get();
            if (a.length < size) {
                a = (T[]) java.lang.reflect.Array.newInstance(a.getClass().getComponentType(), size);
            }

            int k = 0;
            for (Node<E> p = head.next; p != null; p = p.next) {
                a[k++] = (T) p.item;
            }
            if (a.length > k) {
                a[k] = null;
            }
            return a;
        } finally {
            fullyUnlock();
        }
    }

    @Override
    public String toString() {
        fullyLock();
        try {
            Node<E> p = head.next;
            if (p == null) {
                return "[]";
            }

            StringBuilder sb = new StringBuilder();
            sb.append('[');
            for (;;) {
                E e = p.item;
                sb.append(e == this ? "(this Collection)" : e);
                p = p.next;
                if (p == null) {
                    return sb.append(']').toString();
                }
                sb.append(',').append(' ');
            }
        } finally {
            fullyUnlock();
        }
    }

    /**
     * Atomically removes all of the elements from this queue.
     * The queue will be empty after this call returns.
     */
    @Override
    public void clear() {
        fullyLock();
        try {
            for (Node<E> p, h = head; (p = h.next) != null; h = p) {
                h.next = h;
                p.item = null;
            }
            head = last;
            // assert head.item == null && head.next == null;
            if (count.getAndSet(0) >= capacity) {
                notFull.signal();
            }
        } finally {
            fullyUnlock();
        }
    }

    /**
     * @throws UnsupportedOperationException {@inheritDoc}
     * @throws ClassCastException            {@inheritDoc}
     * @throws NullPointerException          {@inheritDoc}
     * @throws IllegalArgumentException      {@inheritDoc}
     */
    @Override
    public int drainTo(Collection<? super E> c) {
        return drainTo(c, Integer.MAX_VALUE);
    }

    /**
     * @throws UnsupportedOperationException {@inheritDoc}
     * @throws ClassCastException            {@inheritDoc}
     * @throws NullPointerException          {@inheritDoc}
     * @throws IllegalArgumentException      {@inheritDoc}
     */
    @Override
    public int drainTo(Collection<? super E> c, int maxElements) {
        if (c == null) {
            throw new NullPointerException();
        }
        if (c == this) {
            throw new IllegalArgumentException();
        }
        if (maxElements <= 0) {
            return 0;
        }
        boolean signalNotFull = false;
        final ReentrantLock takeLock = this.takeLock;
        takeLock.lock();
        try {
            int n = Math.min(maxElements, count.get());
            // count.get provides visibility to first n Nodes
            Node<E> h = head;
            int i = 0;
            try {
                while (i < n) {
                    Node<E> p = h.next;
                    c.add(p.item);
                    p.item = null;
                    h.next = h;
                    h = p;
                    ++i;
                }
                return n;
            } finally {
                // Restore invariants even if c.add() threw
                if (i > 0) {
                    // assert h.item == null;
                    head = h;
                    signalNotFull = (count.getAndAdd(-i) >= capacity);
                }
            }
        } finally {
            takeLock.unlock();
            if (signalNotFull) {
                signalNotFull();
            }
        }
    }

    /**
     * Returns an iterator over the elements in this queue in proper sequence.
     * The elements will be returned in order from first (head) to last (tail).
     *
     * <p>The returned iterator is
     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
     *
     * @return an iterator over the elements in this queue in proper sequence
     */
    @Override
    public Iterator<E> iterator() {
        return new Itr();
    }

    private class Itr implements Iterator<E> {
        /*
         * Basic weakly-consistent iterator.  At all times hold the next
         * item to hand out so that if hasNext() reports true, we will
         * still have it to return even if lost race with a take etc.
         */

        private Node<E> current;
        private Node<E> lastRet;
        private E currentElement;

        Itr() {
            fullyLock();
            try {
                current = head.next;
                if (current != null) {
                    currentElement = current.item;
                }
            } finally {
                fullyUnlock();
            }
        }

        @Override
        public boolean hasNext() {
            return current != null;
        }

        /**
         * Returns the next live successor of p, or null if no such.
         *
         * Unlike other traversal methods, iterators need to handle both:
         * - dequeued nodes (p.next == p)
         * - (possibly multiple) interior removed nodes (p.item == null)
         */
        private Node<E> nextNode(Node<E> p) {
            for (;;) {
                Node<E> s = p.next;
                if (s == p) {
                    return head.next;
                }
                if (s == null || s.item != null) {
                    return s;
                }
                p = s;
            }
        }

        @Override
        public E next() {
            fullyLock();
            try {
                if (current == null) {
                    throw new NoSuchElementException();
                }
                E x = currentElement;
                lastRet = current;
                current = nextNode(current);
                currentElement = (current == null) ? null : current.item;
                return x;
            } finally {
                fullyUnlock();
            }
        }

        @Override
        public void remove() {
            if (lastRet == null) {
                throw new IllegalStateException();
            }
            fullyLock();
            try {
                Node<E> node = lastRet;
                lastRet = null;
                for (Node<E> trail = head, p = trail.next;
                     p != null;
                     trail = p, p = p.next) {
                    if (p == node) {
                        unlink(p, trail);
                        break;
                    }
                }
            } finally {
                fullyUnlock();
            }
        }
    }

    /** A customized variant of Spliterators.IteratorSpliterator */
    static final class LBQSpliterator<E> implements Spliterator<E> {
        static final int MAX_BATCH = 1 << 25;  // max batch array size;
        final VariableLinkedBlockingQueue<E> queue;
        Node<E> current;    // current node; null until initialized
        int batch;          // batch size for splits
        boolean exhausted;  // true when no more nodes
        long est;           // size estimate
        LBQSpliterator(VariableLinkedBlockingQueue<E> queue) {
            this.queue = queue;
            this.est = queue.size();
        }

        @Override
        public long estimateSize() {
            return est;
        }

        @Override
        public Spliterator<E> trySplit() {
            Node<E> h;
            final VariableLinkedBlockingQueue<E> q = this.queue;
            int b = batch;
            int n = (b <= 0) ? 1 : (b >= MAX_BATCH) ? MAX_BATCH : b + 1;
            if (!exhausted &&
                    ((h = current) != null || (h = q.head.next) != null) &&
                    h.next != null) {
                Object[] a = new Object[n];
                int i = 0;
                Node<E> p = current;
                q.fullyLock();
                try {
                    if (p != null || (p = q.head.next) != null) {
                        do {
                            if ((a[i] = p.item) != null) {
                                ++i;
                            }
                        } while ((p = p.next) != null && i < n);
                    }
                } finally {
                    q.fullyUnlock();
                }
                if ((current = p) == null) {
                    est = 0L;
                    exhausted = true;
                } else if ((est -= i) < 0L) {
                    est = 0L;
                }
                if (i > 0) {
                    batch = i;
                    return Spliterators.spliterator(a, 0, i, Spliterator.ORDERED | Spliterator.NONNULL |
                            Spliterator.CONCURRENT);
                }
            }
            return null;
        }

        @Override
        public void forEachRemaining(Consumer<? super E> action) {
            if (action == null) {
                throw new NullPointerException();
            }
            final VariableLinkedBlockingQueue<E> q = this.queue;
            if (!exhausted) {
                exhausted = true;
                Node<E> p = current;
                do {
                    E e = null;
                    q.fullyLock();
                    try {
                        if (p == null) {
                            p = q.head.next;
                        }
                        while (p != null) {
                            e = p.item;
                            p = p.next;
                            if (e != null) {
                                break;
                            }
                        }
                    } finally {
                        q.fullyUnlock();
                    }
                    if (e != null) {
                        action.accept(e);
                    }
                } while (p != null);
            }
        }

        @Override
        public boolean tryAdvance(Consumer<? super E> action) {
            if (action == null) {
                throw new NullPointerException();
            }
            final VariableLinkedBlockingQueue<E> q = this.queue;
            if (!exhausted) {
                E e = null;
                q.fullyLock();
                try {
                    if (current == null) {
                        current = q.head.next;
                    }
                    while (current != null) {
                        e = current.item;
                        current = current.next;
                        if (e != null) {
                            break;
                        }
                    }
                } finally {
                    q.fullyUnlock();
                }
                if (current == null) {
                    exhausted = true;
                }
                if (e != null) {
                    action.accept(e);
                    return true;
                }
            }
            return false;
        }

        @Override
        public int characteristics() {
            return Spliterator.ORDERED | Spliterator.NONNULL |
                    Spliterator.CONCURRENT;
        }
    }

    /**
     * Returns a {@link Spliterator} over the elements in this queue.
     *
     * <p>The returned spliterator is
     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
     *
     * <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT},
     * {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}.
     *
     * The {@code Spliterator} implements {@code trySplit} to permit limited
     * parallelism.
     *
     * @return a {@code Spliterator} over the elements in this queue
     * @since 1.8
     */
    @Override
    public Spliterator<E> spliterator() {
        return new LBQSpliterator<E>(this);
    }

    /**
     * Saves this queue to a stream (that is, serializes it).
     *
     * @param s the stream
     * @throws java.io.IOException if an I/O error occurs
     * @serialData The capacity is emitted (int), followed by all of
     * its elements (each an {@code Object}) in the proper order,
     * followed by a null
     */
    private void writeObject(java.io.ObjectOutputStream s)
            throws java.io.IOException {

        fullyLock();
        try {
            // Write out any hidden stuff, plus capacity
            s.defaultWriteObject();

            // Write out all elements in the proper order.
            for (Node<E> p = head.next; p != null; p = p.next) {
                s.writeObject(p.item);
            }
            // Use trailing null as sentinel
            s.writeObject(null);
        } finally {
            fullyUnlock();
        }
    }

    /**
     * Reconstitutes this queue from a stream (that is, deserializes it).
     * @param s the stream
     * @throws ClassNotFoundException if the class of a serialized object
     *         could not be found
     * @throws java.io.IOException if an I/O error occurs
     */
    private void readObject(java.io.ObjectInputStream s)
            throws java.io.IOException, ClassNotFoundException {
        // Read in capacity, and any hidden stuff
        s.defaultReadObject();

        count.set(0);
        last = head = new Node<E>(null);

        // Read in all elements and place in queue
        for (;;) {
            @SuppressWarnings("unchecked")
            E item = (E) s.readObject();
            if (item == null) {
                break;
            }
            add(item);
        }
    }
}

参考文献:

Java线程池实现原理及其在美团业务中的实践

设置一个可变队列给线程池